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Abstract—Plateau high harmonics are shown to be chirped. The experimental values of the chirp, in good
agreement with purely classical kinematics or strong field approximation quantum theory are positive and
inversely proportional to intensity. The various steps for the optimization of the attosecond pulse train are dis-

cussed.

1. INTRODUCTION

Odd harmonics of an infrared fundamental light
have been the object of constant interest ever since their
first observation in the late 1980s [1], first as a fascinat-
ing nonpertubative process resulting from the interac-
tion of an atom and an intense laser pulse and second as
a coherent, intense source of radiation, with a spectrum
extending to the XUV region and whose remarkable
properties have led to a large number of applications.
The study of the harmonic spectrum, long the object of
most of the experimental effort, revealed this nonper-
turbative character through the observation of a long
plateau, a spectral region over which the successive
orders, at first glance resulting from successive pertur-
bation orders, instead of decreasing rapidly remain, on
the contrary, constant. The plateau ends at the high-
energy side, in a cutoff where the spectrum turns off
over a few orders. At the beginning of the 1990s [2],
plateau high harmonics were proposed as an ideal
source for the Fourier synthesis of attosecond (as)
pulses due to their periodic spectrum, which covers a
wide bandwidth. In the past few years, experiments
have indeed confirmed that subfemtosecond pulses
could be generated from high harmonics. In one
approach [3], a few-cycle pump pulse is used and two
or three cutoff harmonics are spectrally selected. This
method was shown to produce a single pulse of subfem-
tosecond duration, which has been further reduced to
250 as by the last developments of carrier-to-envelope
phase control [4]. In the second approach [5], a larger
group of plateau harmonics are superposed to generate

a train of attosecond pulses, as was proposed in [2],
with a period equal to half the fundamental cycle. In
this method, longer (usually 40-fs) pump pulses are
used and the envelope of the harmonic attosecond pulse
train is typically of the same order. The duration of the
attosecond bursts occurring twice per optical cycle of
the infrared field depend on the phases of the spectral
components and reach the Fourier limit only in the case
of a linear spectral phase. In this paper, we shall be con-
cerned with the synchronism of the harmonic spectral
components or, expressed otherwise, with the linearity
of the spectral phase. It will be shown first that plateau
harmonics are not synchronous but are rather emitted at
different instants depending on their order. Theory and
experiments agree that this dependence is quasi-linear,
which is equivalent to saying that the spectral phase has
a quadratic dependence on frequency. The attosecond
chirp has consequences for the duration of the harmon-
ics bursts and, particularly, implies an optimum total
bandwidth. The optimization of the attosecond pulse
train additionally requires the selection of the so-called
short quantum path in the single-atom response. The
concept of “short” and “long” paths (or trajectories)
derives from the three-step model of harmonic genera-
tion [6], which predicts that two classes of quantum
paths dominate the dipole amplitude of a given har-
monic. The necessity of filtering out one of them in
order to produce a regular attosecond pulse train has
long been known [7]. Recent observations indeed con-
firm this prediction. Intensity is also an important
parameter controlling the chirp and, hence, the duration
of the pulses. Finally, the linearity of the group delay
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Fig. 1. RABITT principle. Energy-level diagram.

suggests that the chirped pulses can be recompressed
by propagation in a suitably dispersive medium. The
content of the paper is as follows: we first briefly recall
the principle of the harmonic characterization in the
frequency domain (RABITT) [5, 8] and summarize the
phase measurements, in particular, that of the quadratic
component. We then discuss the optimization of the

We finally examine the possibility of generating shorter
attosecond pulses by using a longer fundamental wave-
length, e.g., in the mid-infrared region. The discussion
hereinafter is based on previously published experi-
mental results [5, 9, 10].

2. RABITT

Several techniques have been used to determine the
attosecond pulse durations. Some work directly in the
time domain [11], others, in the frequency domain by
measuring both the spectral amplitudes and phases of
each harmonic. It is the latter that is described now. In
the case of plateau harmonics generated by a relatively
long pulse of a few tens of femtoseconds, the phases of
the harmonics are determined pairwise by the recon-
struction of attosesecond beating by two-photon transi-
tions (RABITT) method [12, 8] based on two-color,
two-photon photoionization of a target gas. The photo-
electron energy spectra, under these conditions, are
comprised of narrow peaks, which are, in the case of
long (typically, 40-fs) pump pulses, separated by 2m
and shifted by ® from the single-photon ionization
comb due to the harmonics alone (Fig. 1). The setup
(Fig. 2), which includes an attosecond optical delay line
and a time-of-flight electron spectrometer, is described
in detail elsewhere [5, 9]. The phase information is
extracted from the modulation of these sideband peaks
as a function of the optical delay, provided that one has
knowledge of some atomic parameters [8, 12]. From
Fig. 1 it is clear that there are two quantum paths lead-
ing from the initial state |i) to the final one |f). Second-
order perturbation theory shows that the corresponding
probability is proportional to an interference term that
can be written as
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Fig. 2. RABITT setup.
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where o is the fundamental frequency, At is the delay
between the pump pulse and the harmonic pulse train,
¢, — ¢, 1s the phase difference to be measured, and

,— 9,42 18 a calculated atomic phase difference. This
atomic phase is actually a consequence of the fact that
the second-order matrix element is complex, as can be
shown in the framework of perturbation theory for any
two-photon ATI process. The experiment amounts to
recording function (1) by varying Az and retrieving ¢, —
0, ., from the fitted cosine function. Knowledge of the
phase differences for all the pairs of harmonics within
the bandwidth used, added to that of the corresponding
harmonic amplitudes obtained from the photoelectron
energy spectra, is sufficient for a reconstruction of the
temporal profile of the train [5, 8]. RABITT, like SPI-
DER (the standard method for complete characteriza-
tion of femtosecond pulses), works in the energy
domain. RABITT is not a single-shot technique; rather,
it records a signal averaged over (typically) a thousand
laser shots. The reconstructed time profile is therefore
an average one and assumes that the harmonic phases
remain reasonably constant over the measurement.
Moreover, RABITT yields information only about the
harmonics whose energy is above the target-gas ioniza-
tion threshold or just below it. An early measurement of
the harmonics 11 to 19 generated in argon is shown in
Fig. 4. The time profile of the pulse train resulting from
the superposition of harmonics 11-19 is represented in
Fig. 4: each burst is about 250 attoseconds long. The
corresponding bandwidth of 12 eV implies that the
shortest Gaussian pulse that could be supported is about
150 as (AtAv = 0.44). The profile in Fig. 4 is signifi-
cantly broader than the Fourier limit, reflecting the
effect of the quadratic phase.

3. FIRST EVIDENCE AND QUASI-CLASSICAL
INTERPRETATION OF THE CHIRP

Though it is approximately linear, the spectral phase
indeed shows a quadratic component, which was first
noticed and analyzed in [12]. The interpretation is
straightforward in the framework of the three-step
recollision model of high-harmonic generation. Har-
monic generation in the strong-field regime can be
described as a recollision process between the electron
released in the continuum and accelerated back to its
parent core by the laser field after gaining kinetic
energy. This kinetic energy is then transformed into
photon energy when the electron wavepacket recom-
bines with the core [6]. This process, occurring twice
per optical cycle, gives rise to a sequence of flashes of
(XUV) light whose spectrum is the characteristic har-
monic spectrum. The usual theoretical approach used to
describe high harmonics is the quasi-classical strong-
field approximation [13]. This is a quantum-mechani-
cal theory that determines the amplitude A, of a given
Fourier component of the atomic dipole as the sum of
complex numbers whose phases depend on the corre-
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Fig. 3. Harmonics phases vs. order in argon. The quadratic
fit is clearly superior to the linear one.
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Fig. 4. Attosecond pulse train reconstructed from the mea-
surement of Fig. 3.

sponding complex trajectories of the electron wave-
packet under the combined action of the electromag-
netic field and the Coulomb force:

i) id(i)
A=Y a)e' ™. 2)

all trajectories

In Eq. (5), the index i labels a given trajectory. There-
fore, just from the form of Eq. (1), groups of trajectories
for which the phase is stationary contribute most. The
quasi-classical theory shows in fact that the phases are
proportional to the quasi-classical action [14], and,
hence, the classical trajectories, for which the action is
stationary according to Fermat’s least-action principle,
dominate the sum. A simple argument can be based
directly on the one-dimensional classical trajectories of
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Fig. 5. Recombination time versus energy from classical
kinematics.

a free electron in the electromagnetic field. It can be
shown that two classical trajectories correspond to any
given return energy (or every harmonic order g) up to
the cutoff energy: a short (S) one, for which the dura-
tion of the trajectory is less than half a cycle, and a long
(L) one, whose duration is between a half and a full
cycle. Equation (5) can therefore be rewritten approxi-
mately as:

D
“tage 3)

where @g and @, are given by the quasi-classical action
along the short or long trajectories, respectively. Let us
assume for the moment that only one trajectory is
selected. (This point is actually crucial, and we shall
return to it later on). The recollision (or emission) time
t, in units of 27/ is obtained by solving the Newtonian
equation of motion. The initial and recollision times are
found to be linked by

—sinx + sinx; + cosx;(x —x;) = 0, 4

with x = 0(t; + 7) and x; = f,, t, = t; + T, which can be
solved numerically for x, given x; between 7/2 and T.
Initial phases between 1.57 and 189 correspond to the
“long” trajectories, while those with phases between
1.89 and 7 correspond to the “short” ones. We are inter-
ested, from an attosecond perspective, in the depen-
dence of the recollision time on frequency (or harmonic
order), i.e., on the harmonic photon energy, which is
directly related to the kinetic energy of the recolliding
electron. The classical kinetics directly provide the
recombination time as a function of energy, as shown in
Fig. 5. The plot of Fig. 5 can be done numerically as a
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Fig. 6. Accurate measurements of the attosecond chirp in
neon.

parametric plot, which amounts to eliminating the ini-
tial phase x; between the two equations energy = f(x;)
and x = f(x;). This can be carried out analytically as
well, as was shown by Kazamias and Balcou [12], who
derived an analytical expression for the chirp. Applied
to the case of harmonics 11-19 of Fig. 4, one obtains a
total chirp of 230 as/12.4 eV, which can account for the
observed 250-as duration of the bursts in Fig. 4. Note in
Fig. 5 that the classical mechanics predicts that the
chirp has the opposite sign for the long trajectory
branch and that its absolute value decreases with
intensity.

Short trajectories

20 30 40 50 60 70
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Fig. 7. Quantum calculation of the emission time versus
harmonic order, to be compared with Fig. 5 (from [9]).
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4. ACCURATE MEASUREMENTS
AND QUANTUM THEORY

More accurate measurements in argon (over orders
11-25) (Fig. 6) and neon (over orders 25-55) con-
firmed the quadratic trend and yielded accurate values
of the time difference between consecutive harmonics
of 106 + 8 as for argon at 1.2 x 10" W cm™ and 33 +
3 as in neon at 3.8 x 10'"* W c¢cm™, in good agreement
with the theoretical values deduced from the quantum
calculation [8]. The value of 106 as per order would
yield a minimum duration of 424 as for four harmonics
if they were of equal amplitude. However, their ampli-
tudes decrease rapidly after ¢ = 17, and only three
orders significantly contribute to the train. In neon,
about three times more intensity can be used before sat-
uration; the time delay per order is found to be roughly
three times smaller. The pulses obtained by selecting
harmonics in the plateau between ¢ = 25 and g = 69
(i.e., 23 orders) could be about five times shorter than
in argon, just from the bandwidth. However, the chirp
contributes to a large broadening and the effective pulse
duration amounts to three times the Fourier limit or
150 as in this case.

The quantum calculation uses the saddle-point
method [9] and yields emission times versus photon
energy (or harmonic order) in excellent agreement
with the purely classical calculation above (Fig. 7) in
the plateau region. Moreover, it allows one to examine
the classically forbidden cutoff region, in which the
emission times from both the long and short trajectory
branches become equal and independent of the har-
monic order. The theory also predicts that the absolute
value of the chirp is inversely proportional to the pon-
deromotive energy, i.e., proportional to ®*1. This has
interesting consequences, which will be somewhat
developed at the end of this paper. Experimentally, the
1/1 scaling of the chirp was well observed over a large
range of intensities using xenon, argon, and neon gen-
erating gases to overcome the saturation limit, as
shown in [9]. The quadratic phase is unavoidable. It is
rooted in the high-harmonic generation process: to
produce more energetic photons at recombination, the
electron just needs more time to acquire more kinetic
energy along the short trajectories. All that can be done
is to apply the highest possible intensity compatible
with saturation. In this respect, helium is better than
neon, which is better than argon. Moreover, a recom-
pression device can be exploited, as will be discussed
below.

5. OPTIMAL BANDWIDTH

One obvious consequence of the chirp is that the
pulse width does not decrease monotonously when the
bandwidth increases, since the total delay between the
extreme orders increases with bandwidth. It follows
that the duration goes through a minimum correspond-
ing to an optimal bandwidth (Fig. 8). For example, in
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Fig. 9. (a) Harmonic phase differences in neon after Fig. 1
in [7]. The labels are the harmonic orders. (b) Phases vs.
order concatenated from the differences of Fig. 9a.
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Fig. 10. TDSE square of the dipole acceleration (solid line) and pump field (dotted line) versus time. See text for details.

neon, the pulses obtained by selecting harmonics in the
plateau between g =25 and g = 69 (i.e., 23 orders) could
be about five times shorter than in argon, just judging
from the bandwidth. However, the chirp contributes to
a large broadening and the effective pulse duration
amounts to three times the Fourier limit, or 150 as in
this case. Limiting the total bandwidth to only 11 har-
monics yields a minimum pulse duration close to the
Fourier limit of 130 as. The filtering of such a range of
wavelengths is, in practice, not an easy task and is still
an unsolved problem. The above statement must there-
fore be taken as a theoretical prediction.

6. SELECTION OF THE SHORT
QUANTUM PATH

The theory, as summarized by Eq. (3), stresses that
the amplitude of a given harmonic results from the
interference of essentially two quantum paths. More-
over, the calculation clearly indicates that the emission
times are different for a given photon energy depend-
ing on which quantum path is followed (Figs. 5 and 7).
Actually, this has been known since the seminal paper
of Antoine et al. [7]. Incidentally, one more comment
about this paper may be appropriate: one of the results
included there assesses the phase differences for har-
monics (¢ = 21-61) in neon to be fairly random. This
may appear to contradict the results of Figs. 5 and 7,
which show a recombination time (or derivative of the
phase with respect to frequency) that is almost exactly

linear for a given branch. The contradiction is only
apparent: if one plots the phase itself instead (obtained
by concatenation from the differences), one gets an
almost linear dependence (with, naturally, the small
quadratic terms corresponding to the linear scaling of
the emission time (Fig. 9)). The scattered aspect of the
figure in [7] results from the expanded scale. Another
way to more completely realize the effect of interfer-
ence of all the quantum paths is to perform a numerical
integration of the Schrodinger equation on a grid and
to calculate the dipole acceleration as a function of
time. An example of such a calculation using a code
described elsewhere [15] is shown in Fig. 10. This
result is rather far from the regular series of attosecond
peaks that occurs twice per pump cycle. In this calcu-
lation, the target atom is argon and the 800-nm pump
pulse comprises seven cycles with a sine square pro-
file. For the first cycles, a growing harmonic burst
appears close to the zero-crossings of the pump field,
but it is only at the sixth crossing that the amplitude
becomes noticeable. The three successive bursts
resemble the naive image with a width of about 270 as,
but a second series of peaks already appear around the
peaks of the pump field, which is probably due the long
trajectory. This is another hint that some clean-up is
necessary in order to obtain an optimum pulse train. In
[7] it was predicted that propagation (phase matching)
would do the job. In [10] this was confirmed by com-
paring the quality of the mode locking as measured by
RABITT to the predictions of TDSE on the one hand
No. 6 2005
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and to that of the quasi-classical theory, in which one
can filter out the contribution of one trajectory, on the
other hand (see Fig. 1b in [10]). It thus appears that the
experiment, at least using a setup like the one
described in [5, 9, 10], manages to favor one quantum
path (the short trajectory) over the other one. How this
is actually done is not entirely clarified. One very
likely reason is that the two trajectories are associated
with different angular distributions of the far-field har-
monic intensity and that the experiment “naturally”
picks the one with the highest on-axis emission by
means of the pinhole, which eliminates the infrared
pump beam in the annular-pump beam geometry [5].
The connection between the quantum path and the
angular and coherence properties of the harmonic
emission was discussed in [1] and [16]. In particular,
the experiment in [16] confirmed that the harmonic
emission resulting from the long quantum path has a
much higher divergence due to a faster intensity
dependence of the phase. In the experiment in [9], it is
not really possible to select the long trajectory; only a
substantial degradation of the mode-locking quality is
observed when the phase-matching conditions are
changed.

7. PULSE RECOMPRESSION

The harmonic chirp has a different sign for the two
dominant quantum paths, as is clear from Fig. 5 or
Fig. 7. The positive chirp along the short trajectory
branch suggests that propagation in a negatively disper-
sive medium could compensate the chirp and compress
the resulting attosecond pulses. This is confirmed by a
calculation [9] and a recent experiment [17]. It would
be interesting to select the long trajectory branch with a
negative chirp to be able to recompress the pulses in a
normally dispersive medium. The off-axis angular dis-
tribution of the harmonics seems, however, to be a seri-
ous practical obstacle.

8. MIR HARMONICS

To close this discussion on the optimization of an
attosecond pulse train, we will briefly consider the
influence of the pump frequency on the duration of the
attosecond pulses by reducing the chirp. As was already
mentioned, the quasi-classical theory indicates that the
absolute value of the chirp is proportional to 1/Up and,
therefore, also proportional to ®w?1. It is also possible to
show that the optimum pulse duration (that correspond-

ing to the optimum bandwidth) is proportional to ,/Az,

with At, being the time delay between two consecutive
harmonics, which are, hence, separated by 2w, i.e.,
twice the fundamental frequency [9]. The optimum
pulse duration is therefore proportional to 2. It is
known [18] that strong-field physics may be scaled to
lower intensities by using smaller ionization potential
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(IP) atoms (like alkalis) and longer wavelengths. The

Keldysh parameter (./21P/Up) can thus be kept con-
stant. An interesting source of mid-infrared (three to
four or even five microns) radiation can be obtained by
difference frequency generation in a nonlinear crystal
[18]. Indeed, high harmonics can be generated by such
a source, and one may speculate that, because of the
lower frequency, the chirp will be considerably reduced
and, hence, shorter pulses produced, provided the same
total bandwidth can be afforded (which, of course,
means a much larger number of harmonic orders) at the
same or higher intensity. This will be an object of future
research.

9. CONCLUSION

An attosecond pulse train generated by plateau
high harmonics and a long pump pulse has a number
of obvious drawbacks with respect to a single attosec-
ond pulse (generated by cutoff harmonics) and a few-
cycle pump pulse, especially since the latter allows
one to control the carrier-to-envelope phase [4]. It has,
however, a few advantages. One of them is that, in
principle, the acceptable bandwidth can be much
larger in the plateau than in the cutoff, where it is lim-
ited on the high-energy side by the rapid drop of the
harmonics amplitude and on the low-energy side by
the chirp. Therefore, much shorter pulses could be
produced especially after recompression, as was
already demonstrated.
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