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Sensitive ultrashort pulse chirp measurement
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The chirp of an ultrashort laser pulse can be extracted with high accuracy from a modified spectrum auto-
interferometric correlation waveform by using a new time domain algorithm that allows signal averaging.
We display results revealing high sensitivity to chirp even with signal-to-noise levels approaching unity. Cor-
rection algorithms have been developed to accommodate signal distortion arising from bandwidth limita-
tions, interferometer misalignment, and nonquadratic detector response. © 2006 Optical Society of America
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The need to characterize ultrashort laser pulses has
become increasingly important as the field of ul-
trafast science evolves. Existing schemes have been
successful in completely resolvmg the instantaneous
phase and field of the pulse % Other methods center
on temporal asymmetry in the pulse.® For many ap-
plications, however, a simpler, real-time measure-
ment technique for pulse-width and frequency chirp
assessment is desirable. Chirp can be examined by
using a traditional second order interferometric auto-
correlation (IAC) trace,* but the sensitivity is poor. It
has recently been shown that chirp can be deter-
mined accurately from the IAC trace by means of
spectral reshapmg This technique, which is called
modified spectrum autointerferometric correlation
(MOSAIC), is much simpler than phase-retrieval ap-
proaches because no additional hardware is needed
beyond that used to obtain the IAC. MOSAIC uses
spectral filtering of the IAC to render a waveform
that is highly sensitive to chirp. Signal processing is
simple and straightforward, allowing chirp charac-
terization to be performed by a PC in real time.

We report a new implementation of MOSAIC that
allows for significantly enhanced performance in the
following ways: (i) accurate chirp measurement is
possible with signals close to the noise level and with
TIAC fringe jitter, (ii) bandwidth-limited detection and
nonquadratic response are automatically corrected,
(iii) the order of the chirp can be determined (for a
known functional form of the pulse profile), and (iv)
algorithm efficiency is improved.

A MOSAIC is obtained by spectrally filtering the
second-order IAC waveform. The Fourier transform
spectrum of the second-order IAC reveals frequency
components centered at 0, wy, and 2w,, where w, is
the fringe frequency. Spectral reshaping is performed
by removing the w, component, amplifying the 2w
component by a factor of 2, and retaining the unmodi-
fied envelope component. An inverse Fourier trans-
form is then performed, and the resulting waveform
is a MOSAIC trace. A chirp-free MOSAIC trace ex-
hibits a flat basehne while the presence of shoulders
indicates chlrp Spectral reshaping can equiva-
lently be accomplished in a more computationally ef-
ficient manner in the time domain by using the
MOSAIC envelope method detailed here. Algorithm
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efficiency has been improved by more than a factor of
2 when compared with the double-FFT scheme. In
the present implementation, two curves define the
MOSAIC; these curves are the maximum and mini-
mum envelopes, both of which are depicted in Figs.
1(b) and 1(d). It is important to note that all the cru-
cial chirp information is contained in the minimum
envelope of each MOSAIC waveform. We also replace
the maximum envelope of MOSAIC as defined in Ref.
5 by the intensity autocorrelation. In this new repre-
sentation, the lower trace contains chirp information,
while the upper trace conveys pulse duration only.
Displaying individual interference fringes as de-
scribed in Ref. 5 is not necessary to realize the high
sensitivity of this technique.
The fringe-resolved MOSAIC trace is given by®

Snosarc(? =g(7) + [g2(0) + gX(D]Y? cos[2w7 + D(D)],
(1)

where g(7)=[f(¢)f(t+7)dt is the usual intensity auto-
correlation that defines the pulse width,

() = - tan~ g lg,), @)
gy(n)= J AOft+ sin286001de,  (3)
g7 = f AOE + Peosl2A(1)]dz. )

The intensity of the pulse is denoted f(¢), and A¢(t)
=¢(t+7)—p(t) is the temporal chirp. The lower
boundary of the MOSAIC envelope S,;, defines
shoulders that indicate the amount of chirp. This en-
velope is given by

Smin(7) =8(7) = [8(D? +g.(7)*]"2. (5)

It is desirable to experimentally obtain S,;, di-
rectly by eliminating the fringes. This can be done
through the new spectral manipulation algorithm
presented here. The needed quantities in Eq. (5) are
extracted from the IAC signal by the homodyne op-
erations  g.(7)=2(S1ac(7)sin(2wy7))q and  g.(7)
=2(S1ac(7)cos(2wy7))q; additionally, g7
=(S1ac(7))a/2 is the intensity autocorrelation and
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Fig. 1. Experimentally obtained IAC traces of an (a) un-

chirped pulse, (c¢) a chirped pulse, and (e) a chirped pulse
with distortion. The distortion is produced by misaligning
the autocorrelator. Corresponding MOSAIC maximum and
minimum envelopes are shown in (b), (d), and (f). The cor-
rected minimum envelope of the MOSAIC is depicted in (d)
with triangles.

Stac(7) is the second-order interferometric autocorre-
lation signal. The brackets indicate low-pass filter-
ing, and the upper cutoff frequency, (), is chosen
based on the bandwidth of the pulse. In practice,
wo/mN <Qwy/2, where N is the number of fringes in
the FWHM of the second-order IAC and 1=m=<6.
High-frequency fringes are therefore removed to dis-
play only the waveform envelope, which can be di-
rectly averaged.

We obtain the fringe frequency wg in a time window
at the peak of the IAC. When the signal-to-noise ratio
approaches unity, an accurate measurement of w, is
no longer possible. The fundamental frequency w,
can, however, be determined with high accuracy even
if the second-order autocorrelation signal is weak and
noisy. A small fraction of the interferometer output is
directed to a linear detector to generate a first-order
TIAC from which o, can be obtained. This indepen-
dent measurement of w, allows very noisy IAC sig-
nals to be averaged in the MOSAIC algorithm and
automatically corrected for distortion. This is accom-
plished by averaging Eq. (5) as follows:

{Smin(Dlave =8(7) = g (D2 +g.(D?V2,  (6)

where 7 is a distortion correction factor that is gen-
erated by the algorithm. The IAC may be distorted as
a result of detector bandwidth limitations, autocorr-
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elator misalignment, and/or nonquadratic detector
response leading to S,,;,#0 at 7=0. The distortion
correction factor makes chirp interpretation straight-
forward in MOSAIC. The coefficient 7 forces S,;, to
zero at zero delay:

Smin(o)
[20(0)Z + g,(0)%]2

This correction coefficient allows MOSAIC to sepa-
rate pulse chirp information from distortion associ-
ated with autocorrelator misalignment and noise in
the detection electronics.

An example of autocorrelator misalignment distor-
tion is demonstrated experimentally in Fig. 1. We use
a mode-locked Ti:sapphire laser producing 120 fs
pulses at a center wavelength of 820 nm. An aligned
IAC signal is shown in Fig. 1(c), while Fig. 1(e) de-
picts a signal from a deliberately misaligned autocor-
relator. The spatial fringes across the detector mimic
a restrictive electronic bandwidth. Corresponding
MOSAIC waveforms are displayed in Figs. 1(d) and
1(f). The IAC traces before and after the misalign-
ment appear identical. The MOSAIC signal in Fig.
1(f), however, reveals misalignment by a visible de-
parture of S,;, from the baseline at zero delay. It is
important to eliminate such deviations for correct
chirp characterization. Real-time calculation of 7 is
performed by using Eq. (7); the corrected MOSAIC
shown in Fig. 1(d) reproduces the undistorted shoul-
der height to within the measurement noise.
MOSAIC can produce a correct shoulder height for
nonquadratic detectors with I?*?, —-0.2<e<0.2 for
chirped pulses producing a shoulder height of 13% or
less with an error of +2%. Equivalently, MOSAIC can
determine the order of detection to within 7% for
—0.3=<e=1.0 by using unchirped pulses. Our simula-
tions show that MOSAIC can simultaneously correct
for small insufficiencies in bandwidth, autocorrelator
misalignment, and nonquadratic response in real
time and with high accuracy.

The MOSAIC generation process with a very noisy
IAC is demonstrated in Fig. 2. The IAC waveform is
barely visible above the noise in Fig. 2 (left). After an
implementation of the algorithm in Eq. (6), where an
average has been taken over 1200 envelopes, a clear
MOSAIC waveform can be resolved in Fig. 2 (right,
triangles). This MOSAIC trace reproduces the chirp
extracted from a noise-free IAC of the same pulse

7= (7)
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Fig. 2. Left, single IAC trace just above the noise level.
Right, averaged MOSAIC waveform produced after acquir-
ing 1200 noisy IAC traces (triangles); the chirp of the same
pulse obtained with negligible noise is reproduced (solid
curve).
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Fig. 3. Semilog plot of the experimental data (triangles)

and fit (solid curves) that reveal high-order components of
chirp on a 120 fs Ti:sapphire laser pulse.

[solid curves in Fig. 2, right]. This approach is very
useful for characterizing ultrashort pulses deep in
the ultraviolet or far infrared where the production of
second-order TAC signals is often plagued by distor-
tion and noise. Averaging also allows for efficient, in
situ pulse monitoring, since only a relatively small
amount of power needs to be diverted to the autocor-
relator. It is important to emphasize that it is gener-
ally difficult to produce an averaged IAC with chirp
sensitivity because of fringe jitter. Our method over-
comes this obstacle.

The shoulders of the MOSAIC trace have structure
and temporal separation that are sensitive measures
of the order of the chirp. In Fig. 3 we fit the MOSAIC
envelope in Fig. 2 (right) assuming a laser pulse hav-
ing an electric field E(t)/E,=sech(t/t,)exp{i[ wt
+¢(t/t,)]} with  chirp ¢(t/tp)=a(t/tp)§+ b(t/t,)?
+c(t/ tp)4 and pulse duration ¢,. The coefficients a, b,
and ¢ are adjusted to fit to the kinks in S, ;, and the
peak height. The fit shown in Fig. 3 is calculated with
@=0.18+0.01, |[5|=0.2+£0.02, and ¢=-0.082+0.002.
Structure in the shoulders indicates the presence of
higher-order chirp (i.e., b#0 and/or ¢ #0). Previous

attempts to fit a MOSAIC trace only incorporated the
shoulder height.® The present scheme augments ear-
lier calculated fits by the inclusion of temporal fea-
tures on the MOSAIC trace. Analysis of detailed
shoulder features is possible because of our newly de-
veloped averaging algorithms. The extracted infor-
mation can be used to seed amplitude- and phase-
retrieval algorithms such as PICASO,” allowing them
to more rapidly converge.

In conclusion, we have shown that, by using
MOSAIC, chirp extraction is possible even when IAC
signals approach the noise level. The sensitivity of
MOSAIC to autocorrelator misalignment, electronic
bandwidth limitations, and nonquadratic detector re-
sponse has been demonstrated. The ability to per-
form signal averaging allows us to accurately charac-
terize the order of chirp by analyzing details of the
waveform. MOSAIC continues to provide a simple
approach for real-time ultrashort pulse characteriza-
tion. This software is available as a free download at
http://www.optics.unm.edu/sbahae/.
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