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Optical dipole traps and atomic waveguides based on Bessel light beams
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We theoretically investigate the use of Bessel light beams generated using axicons for creating optical dipole
traps for cold atoms and atomic waveguiding. Zeroth-order Bessel beams can be used to produce highly
elongated dipole traps, allowing for the study of one-dimensional trapped gases and realization of a Tonks gas
of impenetrable bosons. First-order Bessel beams are shown to be able to produce tight confined atomic
waveguides over centimeter distances.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden
tion ~BEC! in dilute alkali vapors@1,2# has generated sub
stantial theoretical and experimental research activity@3#.
BEC provides an important quantum system where one
observe various phenomena such as superfluidity@4#, vorti-
ces @5,6#, spin domains@7#, or solitonlike behavior@8–10#.
Central to future advances with these quantum-degene
systems is their manipulation by external potentials. The
of light fields offers an exciting avenue in this respect,
optical potentials can be state independent, can offer an a
of spatial forms, and can be rapidly switched. They of
very good prospects for dipole traps and matter-wave gui

Previous work has been reported for optical dipole tra
based on standard Gaussian light beams@11–13#. Free-space
propagating light beams such as Laguerre-Gaussian
beams@14# and Bessel light beams@15# are excellent candi-
dates for advanced all-optical manipulation of quant
gases. Laguerre-Gaussian light beams offer a dark ho
central region for guiding and focusing atoms@16,17#. Their
annular form can also be used to realize toroidal optical
pole traps for BEC@18#, enabling studies of persistent cu
rents. Bessel light beams are solutions of the scalar He
holtz equation that are propagation invariant. This immun
to diffraction, coupled with the small size of their centr
region, means they offer unique characteristics in the opt
domain. In this work we discuss the use of Bessel lig
beams for trapping and guiding cold atoms at or close
quantum degeneracy. Specifically we study the Bessel l
beam optical dipole trap, with the aim of generating on
dimensional quantum gases. In particular we look at a p
sible realization of a Tonks gas of impenetrable bos
which exhibit fermioniclike excitations@19#. Furthermore,
we analyze in detail the waveguiding of a matter-wave be
along a higher-order Bessel light beam. This method co
provide an important route to realizing all-optical atom inte
ferometers and furthering the loading of magne
waveguides.

II. BESSEL LIGHT BEAMS

In this section we review the basics of the generation
Bessel light beams. Ideal forms of such beams are imp
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sible to realize, as they would have an infinite extent a
carry infinite power@15#. However, finite approximations o
these beams can be realized that propagate over exte
distances in a diffraction-free manner. Holographic metho
offer an efficient generation of Bessel beams@20,21#. An-
other very efficient method to generate an approximation
Bessel beam is by use of a conically shaped element ter
an ‘‘axicon,’’ and it is this form of Bessel beam generatio
that we concentrate upon in this work. This generat
method was discussed in detail elsewhere@22,23#, but we
review it here for completeness and clarity in notation. O
main interest is using zeroth-order Bessel beams for opt
dipole traps and first-order Bessel beams for atom
waveguiding, and we shall concentrate on these cases.

Bessel beams are solutions of the free-space wave e
tion which propagate with an unchanging beam profile alo
the propagation axis which we take asz in cylindrical coor-
dinates (r ,u,z). The electric field of a monochromatic, lin
early polarized ideal Bessel beam of orderl and frequency
vL is @15,20–22#

E~r ,u,z,t !5
x

2
@E0Jl~krr !ei (kzz1 lu2vLt)1c.c.#, ~1!

whereE0 is a scale electric-field value;Jl is the l th order
Bessel function;l .0 is the azimuthal mode number, whic
we take as positive for simplicity in notation; andkr andkz
are the radial and longitudinal wave vectors such thatk2

5kr
21kz

2 , with k5vL /c52p/lL . The zeroth-order solu-
tion J0 has a central maximum surrounded by concen
rings of roughly equal power, while the higher-order so
tions Jl have a zero on-axis intensity with concentric ring

The method of generating a Bessel beam by use of
axicon is based on the observation that the Fourier transf
of the Bessel beam solution@Eq. ~1!# over the transverse
plane (r ,u) is an infinitely high ring in the spatial frequenc
domain peaked atK5kr , where the phase varies from ze
to 2p l around the peak: the Bessel beams may therefore
viewed as a superposition of plane waves with transve
wave vectors lying on a ring of magnitudekr . A finite real-
ization of such a beam may be produced by passin
Laguerre-Gaussian~LG! beam of orderl through an axicon,
©2001 The American Physical Society02-1
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as illustrated in Fig. 1. The axicon is a conically shap
optical element which imparts a phase shiftfax(r ,u)5kaxr
to an incident field wherekax5k(n21)g, n being the re-
fractive index of the axicon material, andg the internal angle
of the element. By choosingkax5kr for a specific Besse
beam, the axicon imposes a ring of transverse wave vec
characteristic of the Bessel beams on the incident beam,
these plane waves come together past the axicon to pro
a Bessel beam. Single-ringed LG beams~i.e., with a radial
mode indexp50), which may be produced using holo
graphic elements, have electric-field envelopes„plane-wave
factor exp@i(kz2vLt)# removed… at a focus of the form@14#

El~r ,u,z50!5A 2P0

pw0
2l !

S 2r 2

w0
2 D l /2

exp~2r 2/w0
2!eil u,

~2!

whereP0 is the power atz50 incident on the axicon,w0 is
the Gaussian spot size, andl is the azimuthal mode numbe
Then a LG mode of orderl incident on an axicon withkax
5kr has the appropriate azimuthal phase variation to p
duce anl th-order Bessel beam past the axicon. In particu
from geometrical considerations and for a LG mode of s
w0, we expect the ring of plane waves imposed by the axi
to overlap spatially over a longitudinal rangezmaxsin(q)
'w0, with sin(q)5kr /k. This gives the estimate@23#

zmax5
kw0

kr
~3!

for the range over which the plane waves overlap, and p
duce a finite realization of the Bessel beam profileJl(krr )
past the axicon: The larger the input spot sizew0, the larger
the center portion of the transverse plane over which
actual field approaches the ideal Bessel beam.

Numerical simulations and accompanying experime
have verified this physical picture for Bessel beam gene
tion using an axicon@22,23#. The numerical simulations use
the Fresnel diffraction integral to propagate the input L
field @Eq. ~2!# times the phase aberration exp@ifax(r,u)# due
to the axicon, to distances beyond the axicon. Figure 2 sh
a gray-scale plot of the field intensityI (x,y50,z) as an ex-
ample of this numerical propagation forl 51, w0
50.29 mm, lL5780 nm, n51.5, andg51°, giving kr
56.83104 m21. For this examplezmax53.4 cm, and the
simulation shows that this indeed estimates the scale of

FIG. 1. Illuminating an axicon with a LG mode of orderl pro-
duces a Bessel beam of the same order within the shaded reg
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Bessel beam propagation. As expected for aJ1 beam the
intensity profile has a dark fringe at the center of width
aboutwB51/kr514.7 mm.

The evolution of the field past the axicon may also
approximated using the method of a stationary phase app
to the Fresnel integral@23#, which yields the following ex-
pression for the field intensityI l(r ,z) for an l th-order LG
input mode:

I l~r ,z!'
p2l 11

l !
~krw0!S P0

pw0
2/2

D S z

zmax
D 2l 11

3exp~22z2/zmax
2 !Jl

2~krr !, ~4!

with zmax given by Eq.~3!. Figure 3 shows the on-axis in

n.

FIG. 2. Gray-scale plot of the intensityI (x,y50,z) for an input
LG beam withl 51 showing Bessel beam formation over an elo
gated distance. Other parameters arew05290 mm, lL

5780 nm, n51.5, and g51°, giving zmax53.4 cm andzpeak

52.95 cm.

FIG. 3. On-axis intensity variation for an inputl 50 LG beam
using both the exact Fresnel integral approach~solid line! and ex-
pression~4! based on the stationary phase approximation~dashed
line!. All other parameters are the same as in Fig. 2.
2-2
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tensity I (0,z) versus the propagation distancez past the axi-
con obtained using both the Fresnel integral approach~solid
line! and the approximate solution@Eq. ~4!# ~dashed line! for
the same parameters as Fig. 2, exceptl 50, with excellent
agreement~for l 50 the intensity has a peak on-axis!. In
particular, by differentiating Eq.~4!, we find that the peak
intensity evaluated over the whole transverse plane occu

zpeak5
A2l 11

2
zmax, ~5!

which giveszpeak51.7 cm, in excellent agreement with th
results in Fig. 3. The approximate expression@Eq. ~4!# is
applicable over the center region of the Bessel beamz
.k/kr

2 @23#. Using Eq.~3!, this condition can be written a
z.zmax

2 /(kw0
2): Recognizing thatkw0

252zR is twice the
Rayleigh rangezR of the input LG beam@14#, and wB
51/kr is a measure of the width of the central lobe of theJ0
Bessel beam or the central dark fringe for aJ1 beam, we see
that, if

zmax

zR
5

2wB

w0
!1, ~6!

then Eq.~4! should be valid over most of the propagatio
range of the Bessel beam around the position of the p
zpeak. That is, under conditions where the central spot
dark fringe of the Bessel beam is narrow compared to
input LG spot size, which is what we want, the stationa
phase approximation should be valid. For the above
amples,wB /w051/19.7, and this is typical of parameters w
consider. We shall assume that this condition is satis
hereafter, and use the approximate expression@Eq. ~4!# in the
remainder of this paper.

Finally, we point out one further feature of Bessel bea
that highlights their utility, namely, that their radial widt
wB51/kr51/@k(n21)g# is determined solely by the lase
wavelength and the axicon parameters, whereas their lo
tudinal extentzmax5kw0 /kr5kw0wB is also dependent on
the incident LG spot sizew0. This means that the longitudi
nal extent and radial confinement can be varied indep
dently. This is in contrast to a Gaussian beam of equal s
w0, for which the longitudinal extent of the focus is th
Rayleigh rangezR5kw0

2/2.

III. BESSEL OPTICAL DIPOLE TRAPS

In this section we examine the use of zeroth-order orJ0
Bessel beams for creating elongated optical dipole traps
Bose-Einstein condensates, and assess their utility for re
ing one-dimensional trapped gases and a Tonks gas@19# of
impenetrable bosons@24,25#. Here we concentrate on th
case of bosonic atoms, but similar considerations apply
degenerate fermionic atoms@26# in Bessel beam traps.
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A. Gross-Pitaevskii equation

The Gross-Pitaevskii equation~GPE! describing the mac-
roscopic wave functionc(r ,t) of an N-atom Bose-Einstein
condensate in an optical dipole trap can be written as@27#

i\
]c

]t
52

\2

2M
¹2c1V~r ,z!c1U0Nucu2c, ~7!

where¹25¹ r
21]2/]z2 is a Laplacian, which is the sum o

the radial and longitudinal Laplacians;M is the atomic mass
andU054p\2a/M is the effective three-dimensional shor
range interaction strength, witha being thes-wave scattering
length. The potential term on the right-hand side,

V~r ,z!5
\G2

8D S I ~r ,z!

I Sat
D , ~8!

describes the optical dipole potential whereD5vL2vA is
the laser detuning from the optical transition frequen
vA , G is the natural linewidth of the optical transition,I Sat
is the resonant saturation intensity, andI (r ,t)
5 1

2 e0cuE(r ,z)u2. For a red-detuned laser the potential
negative, and the atoms are attracted to the regions of
intensity, whereas for a blue-detuned laser the atoms are
pelled into the low-field regions.

B. Optical dipole potential

Here we investigate the properties of an optical dip
trap formed using a red-detunedJ0 beam, so that the atom
are attracted to the intense central maximum of the inten
distribution given by Eq.~4! with l 50:

I 0~r ,z!'2pkrw0S P0

pw0
2/2

D S z

zmax
Dexp~22z2/zmax

2 !J0
2~krr !.

~9!

We are primarily interested in tight bound optical dipo
traps, so we shall approximate the optical dipole poten
@Eq. ~8!# using the parabolic approximation to the full inte
sity I 0(r ,z) around the intensity maximum at (r 50,z
5zpeak),

V~r ,z!2V~0,zpeak!'
1
2 MV r0

2 @r 21l2~z2zpeak!
2#, ~10!

with

V r0
2 5exp~21/2!

\G2

4uDu
P0

MI Sat

k

zmax
kr

2 ,

l5
2A2

kw0
52.83

wB

zmax
. ~11!

A red-detuned (D,0) J0 optical dipole potential therefore
provides confinement in both radial and longitudinal dire
tions. HereV r0 is the radial oscillation frequency, with
corresponding ground-state oscillator widthwr0

5A\/MV r0, andl is the ratio between the longitudinal an
radial trap frequenciesVz0 /V r05l @28–30#, which also de-
2-3
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termines the aspect ratio between the radial and longitud
ground-state widthswr0 /wz05Al ~in the absence of many
body repulsion!. We remark that even for tight transvers
confinement, anharmonic corrections beyond the parab
approximation for the longitudinal~z! variation of the optical
dipole potential@Eq. ~10!# are generally required. This i
evident from Fig. 3, where the on-axis intensity variation
the J0 Bessel beam is not symmetric around the peak.
this work we shall restrict ourselves to the parabolic appro
mation. However, we remark that anharmonic corrections
the parabolic approximation can have pronounced effects
trap properties such as the condensate fraction and the
quencies of the collective excitations that can be suppo
by Bessel atomic waveguides, especially for shallow tr
@31#.

So far we have ignored the effects of gravity, which w
assume acts in the radial direction so the longitudinal axi
the trap is horizontal. For tight radial confinement, the gr
ity will serve simply to displace the origin of the radial mo
tion, and this applies under conditions such th
MV r0

2 wr0
2 /2@Mgwr0 with g59.81 ms21. Using wr0

5A\/MV r0, this leads to the condition on the confineme
of the ground state,wr0!A3 \2/(2M2g). For example, for
85Rb the radial confinement has to be less than 0.31mm,
whereas for23Na a confinement ofwr0!0.74mm would be
sufficient. We assume that this condition is satisfied, a
hereafter neglect the effects of gravity.

C. One-dimensional trapped gases

From Eq. ~11!, a parameterl is seen to determine th
anisotropy of theJ0 optical dipole trap. It is well known tha
in the limit l!1 highly asymmetric cigar-shaped traps a
formed which are elongated along the longitudinal direct
@28–30#. Bessel beams are exceptional in this regard, as
can produce extreme asymmetries. To illustrate this, re
that w0 is the input LG spot sizebeforethe axicon, for ex-
amplew051 mm, so thatl54.831024 for lL51064 nm.
We stress that one obtains such large asymmetries u
Bessel beams without sacrificing the radial confinement
the radial (wB51/kr) and longitudinal (zmax) extents of the
Bessel beam are independently variable. In contrast, fo
Gaussian optical dipole trap, changing the focused spot
w0 also changes the longitudinal extension of the dipole t
set by the Rayleigh rangezR5kw0

2/2 @14#.
The limit l!1 corresponds to the regime of on

dimensional trapped gases@25,29,30#, in which the radial
variation of the macroscopic wave function is effectively fr
zen as the normalized ground-state modeug(r ) of the radial
optical dipole potential:

Egug52
\2

2M
¹ r

2ug1
1

2
MV r0

2 r 2ug . ~12!

Writing the macroscopic wave function in a form reflectin
the single-radial mode nature of the solution,

c~r ,z,t !5ug~r !f~z,t !e2 iEgt/\, ~13!
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and combining Eqs.~7!, ~10!, ~12!, and ~13!, we obtain the
one-dimensional Gross-Pitaevskii equation for the redu
system@29,30#,

i\
]f

]t
52

\2

2M

]2f

]z2
1

1

2
Ml2V r0

2 ~z2zpeak!
2f1gNufu2f,

~14!

where

g5U0E 2prdr uug~r !u45
2\2a

Mwr0
2

52\V r0a ~15!

is the effective one-dimensional short-ran
interaction strength@25#. In the steady state we setf(z,t)
5x(z)exp(2imt/\) in Eq. ~14!, with m the chemical poten-
tial of the one-dimensional system. Then, using the Thom
Fermi approximation@25# for high density in which the
kinetic-energy term is neglected@28#, Eq. ~14! yields for the
one-dimensional density

r~z!5ux~z!u25
m

g S 12
~z2zpeak!

2

zm
2 D , uz2zpeaku<zm ,

~16!

with

m5S 3gN

4 D 2/3S MV r0
2 l2

2 D 1/3

, zm5S 3Nwr0
2 a

l2 D 1/3

.

~17!

This density solution has a peak one-dimensional den
rpeak51.5(N/Lz)}N2/3 with a longitudinal lengthLz52zm .

The Gross-Pitaevskii equation~14! was previously inves-
tigated as a model for a one-dimensional Bose-Einstein c
densate in a number of situations, including the ground s
@32# and dynamics@33# of cigar-shaped traps@34–36#, dark
solitons @30,9,37,38#, bright solitons for negative scatterin
lengths@29,30,39#, gap solitons in optical lattices@8#, atom
waveguides@40–42#, and as a model Luttinger liquid@43#.
Here our goal is to highlight the utility ofJ0 optical dipole
traps for experimental studies of one-dimensional trap
gases. To illustrate the basic scales involved in these e
gated traps, we consider the case of thelA5780 nm transi-
tion of Rb with I Sat516 W/m2 and G52p36.1 MHz. A
far red-detuned laser at a wavelength oflL51064 nm is
used to generate a Bessel beam with a longitudinal ex
zmax510 cm and a central spot of full-width radius 3mm
~corresponding towB51.25mm, and consequentlyw0
513.6 mm). If a laser power ofP055 W is used, this re-
sults in a trap potential of about249mK depth with radial
trap frequencyV r052p38.8 kHz, a radial confinement o
wr0582 nm, and an aspect ratio ofl53.531024. Then for
N5104 atoms and a scattering lengtha55 nm, for example,
we find Lz52zm51.9 mm, and a peak densityrpeak56.4
3104 cm21. For comparison, a focused Gaussian with t
same radial confinement~and trap depth! gives a trap with an
aspect ratio of only 831022. We remark, however, that th
2-4
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power required to obtain the same radial confinement for
Gaussian beam is much less, typically on the order of m
@11#. This arises because for the Bessel beam the trap
atoms only experience the intensity in the central peak of
beam, and the concentric rings surrounding the peak, tho
key in realizing the long extent of the Bessel optical dipo
trap, do not directly affect the atomic confinement.

Bessel beam traps will suffer from the same loss mec
nisms as other shallow far-off-resonance dipole traps. Ap
from heating due to diffractive collisions with backgroun
gases@44#, the trap lifetime will be limited by laser-noise
induced heating@45#. The expected loss rates due to intens
fluctuations and the pointing instability of the laser beam
a Bessel beam trap should be comparable to those in Ga
ian beam traps with identical radial confinement and t
depth.

Finally, we note that theJ0 optical dipole trap provides a
means to accelerate an atomic trapped one-dimensional
Consider a one-dimensional gas in the ground state of aJ0
trap peaked aroundz5zpeak5kw0/2kr . If we now start to
slowly increase the LG spot sizew0(t), then the longitudinal
position of the peak density of the trapped gas should var
time according tozpeak(t)5kw0(t)/2kr . Such a scheme pro
vides a means to impart a longitudinal velocity to an initia
stationary trapped gas.

D. Realization of a Tonks gas

In the above discussion we tacitly assumed that the
tem of cold atoms formed a Bose-Einstein condensate. H
ever, Petrovet al. @25# theoretically studied the diagram o
state for a one-dimensional gas of trapped bosons, assu
l!1, and found that a true Bose-Einstein condensate, o
least a quasicondensate, with concomitant macroscopic
cupation of a single state, is only attained for high enou
particle numbersN.N* with

N* 5S Mgwz0

\2 D 2

5F2S a

wr0
D S wz0

wr0
D G2

. ~18!

For N,N* and temperaturesT,N\Vz0, one obtains a
Tonks gas of impenetrable bosons for which hard-core re
sion between the bosonic atoms prevents them from p
etrating through each other in the one-dimensional syst
and the system acquires properties reminiscent of a o
dimensional system of fermionic atoms. This remarka
property of the Tonks gas is related to a breakdown of
spin-statistics theorem in one dimension, and is reflecte
the Fermi-Bose mapping for this system first elucidated
Girardeau@46#, and applied to atomic waveguides by Olsh
nii @24#. Recent theoretical investigations of Tonks gas
showed that they can support dark soliton structures@47,48#,
and also that their coherence properties are significantly
ferent from the corresponding Bose-Einstein condens
@49,50#. Furthermore, recent experimental developme
suggested that Tonks gases should be realizable in mag
atom waveguides@40–42#, and Bongset al. @36# proposed a
hybrid trap composed of an optical dipole trap formed with
first-order LG beam combined with magnetic longitudin
06360
e

ed
e

gh

a-
rt

r
ss-
p

as.

in

s-
-

ing
at
c-
h

l-
n-

,
e-
e
e
in
y
-
s

if-
te
s
tic

l

trapping. Here we examine the utility ofJ0 optical dipole
traps for realizing a Tonks gas.

The highly elongated Bessel beam discussed in Sec
(lL51064 nm, P055 W, zmax510 cm, wB51.25mm)
would be an ideal candidate for the experimental realizat
of a Tonks gas. The low aspect ratiol53.531024 and tight
radial confinementwr0582 nm result in a high upper bound
ary N* for the particle number of the Tonks gas. For t
commonly used87Rb isotope with a scattering lengtha
55 nm one findsN* 5420. Although this is still a fairly
low value it should be possible to experimentally realize
small 87Rb Tonks gas. However, more promising would
the use of the85Rb isotope, where a Feshbach resonance
be used to tune the normally negative scattering length
positive values of several hundred nanometers magnit
@51#. As N* is proportional to the square of the scatteri
length, even a moderate increase toa550 nm would make it
possible to create a larger Tonks gas, with sayN52000 at-
oms, which should be easily detectable.

The Bessel beam trap offers some advantages comp
to alternative suggested approaches using magn
waveguides@40–42# and a hybrid magnetic-optical trap@36#.
First, it involves only a very simpleall-optical system for
which the aspect ratio of the trap may be controlled sim
by varying the Gaussian spot size incident on the axic
More specifically, being an all-optical system, it does n
involve material surfaces as in magnetic waveguides, wh
can cause matter-wave decoherence@52,53#. Furthermore, it
allows for the possibility of trapping multiple magnetic su
levels and the investigation of multicomponent Tonks gas
which would not be possible in the hyrbrid magnetic-optic
trap of Bongset al. @36#.

IV. BESSEL BEAM ATOMIC WAVEGUIDES

Higher-order Bessel beamsJl with l .0 have a zero on-
axis intensity surrounded by intense concentric rings, an
blue-detuned beam can therefore trap atoms radially in
dark hollow core of the beam. In addition, since the intens
vanishes on-axis, the higher-order beams produce a n
gible longitudinal confinement~see Fig. 2 for theJ1 Bessel
beam! in comparison to theJ0 Bessel beam. The higher
order Bessel beams therefore present the opportunity to
ize atomic waveguides with tight radial confinement ov
distances comparable to the propagation rangezmax of the
Bessel beams. Furthermore, theJ1 beam is special in that i
provides a parabolic radial trapping potential to lowest or
~see below!, whereas the higher-order trapping potential va
asr 2l near the axis. We shall therefore concentrate on theJ1
atomic waveguide@54#.

A. Atomic waveguide potential

Here we investigate the properties of an atomic wa
guide formed using a blue-detuned (D.0) J1 beam, so that
the atoms are repelled into the zero intensity central m
mum of the intensity distribution given by Eq.~4! with l
51:
2-5
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I 1~r ,z!'4pkrw0S P0

pw0
2/2

D S z

zmax
D 3

e22z2/zmax
2

J1
2~krr !.

~19!

Substituting this expression into the optical dipole poten
@Eq. ~8!#, we write the atomic waveguiding potential in th
form

V~r ,z!5
1

2
MV r1

2 ~z!S 4
J1

2~krr !

kr
2 D '

1

2
MV r1

2 ~z!r 2,

~20!

where in the last form of the potential we used the appro
mationJ1(x)'x/2, which is applicable for tight radial con
finement. Here thez-dependent radial oscillation frequenc
V r1(z) is given by

V r1~z!5V r1~zpeak!S z

zpeak
D 3/2

exp@20.75~z2/zpeak
2 21!#,

~21!

with zpeak5A3zmax/2 the position of the peak intensity fo
the J1 Bessel beam, andV r1(zpeak) is the peak radial oscil-
lation frequency given by

V r1
2 ~zpeak!5SA3

2 D 3

exp~23/2!
\G2

4uDu
P0

MI Sat

k

zmax
kr

2 .

~22!

In comparison to the radial oscillation frequency of theJ0
Bessel beam trap we findV r1(zpeak)'0.5V r0.

The J1 Bessel beam therefore defines an atomic wa
guide whose radial confinement peaks atz5zpeak and varies
with the longitudinal coordinatez. If we take the effective
lengthL of the waveguide to be the full width at half max
mum of V r1(z) versusz, then by inspection of Eq.~21! we
find L'zmax, as may have been anticipated physically ba
on the properties of the Bessel beams.

B. Gross-Pitaevskii equation

To examine the properties of a Bose-Einstein conden
propagating in aJ1 atom waveguide, we shall approxima
the waveguide as invariant along thez axis over the length
L5zmax, and calculate the ground-state radial mode of t
system. In general we should solve the propagation prob
of the matter wave field through the varying atomic wav
guide potential, and show how the atoms are funneled
the waveguide, but these shall be the subjects of a fu
paper.

To proceed, we consider the GPE~7! for a Bose-Einstein
condensate of momentumpz per atom moving along thez
axis in a cylindrically symmetricJ1 Bessel atom waveguid
which is invariant along thez axis. Then, writing the macro
scopic wave function as

ANc~r ,z,t !5w~r !ei (pzz2mt)/\, ~23!

the GPE becomes
06360
l
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S m2
pz

2

2M Dw52
\2

2M S d2

dr2
1

1

r

d

dr D w1V0J1
2~krr !w

1U0uwu2w, ~24!

where m is the chemical potential, and V0

52MV r1
2 (zpeak)/kr

2 characterizes the strength of theJ1

waveguide. The wave function over the atomic wavegu
effective lengthL5zmax is normalized to the number of par
ticles:

zmaxE
0

`

2prdr uw~r !u25N. ~25!

To facilitate a numerical solution of the GPE, we introdu
scaled variables@55#

z5krr , w~r !5A Er

uU0u
w~z!, ~26!

in terms of which the GPE forw(z) becomes

aw52S d2

dz2
1

1

z

d

dz D w1bJ1
2~z!w1cuwu2w. ~27!

Here Er5\2kr
2/2M sets the energy scale,a5(m

2pz
2/2M )/Er is the scaled energy eigenvalue,b5V0 /Er ,

andc561 sets the sign of the many-body interactions. T
wave functionw(z) is now normalized as

E
0

`

zdzuw~z!u25hN5n, ~28!

where the dimensionless variableh5(kr
2uU0u/L)/(2pEr)

54uau/L.
Strictly speaking theJ1 atomic waveguide potential in

GPE~27! does not have bound-state solutions, since any
tial wave function localized in the central minimum of theJ1
potential will ultimately tunnel out over the finite potentia
barrier due to the first peak of the Bessel beam. However,
tight confined atoms the tunneling time can be made a
trarily long, and here we ignore tunneling to lowest ord
Figures 4 and 5 show the results of the numerical solution
GPE~27! for b5103 andc51, that is repulsive many-body
interactions. These numbers would describe, for exampl
guide for rubidium with a radius of 5mm ~corresponding to
wB52.78mm) and a lengthL55 cm using 40 mW of light
at lL51064 nm. The numerical method used to solve E
~27! was the same as that in Ref.@55#. Figure 4 shows the
variation of the scaled energy eigenvaluea versus the scaled
number of particlesn5hN; we see that asn increases, so
does the energy due to the repulsive many-body interacti
For n→0 the scaled energy reduces to that of the atom
waveguide potential~see below!. Figure 5 shows the scale
wave functionw(z) versus the scaled radial coordinatez for
n50.88 (a550) ~solid line!, n513.4 (a5150) ~dotted
line!, andn543 (a5250) ~dashed line!. Here we see tha
as the scaled number of atoms increases, so does the wid
2-6
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the wave function, as expected physically. Clearly there
limit to the allowable width of the wave function, and hen
the number of atoms, as the tunneling out of the atom
waveguide alluded to above will become more relevant
the wave function width approaches that of the central m
mum of theJ1 Bessel beam.

C. Thomas-Fermi approximation

In this section we discuss approximate solutions to G
~27! to provide a framework for the numerical solution
First for tight confinement, so that tunneling out of the trap
negligible, we approximateJ1(z)'z/2, giving

aw'2S d2

dz2
1

1

z

d

dz D w1
bz2

4
w1uwu2w. ~29!

FIG. 4. Scaled energy eigenvaluea vs scaled particle numbe
n5hN for b5103. Physically,a is the chemical potential minu
the longitudinal kinetic energy per particle scaled to the energyEr ,
and b5V0 /Er measures the depth of the Bessel optical poten
scaled toEr .

FIG. 5. Scaled transverse eigenmodew(z) vs scaled radial co-
ordinate z for b5103 and n50.88 (a550) ~solid line!, n
513.4 (a5150) ~dotted line!, andn543 (a5250) ~dashed line!.
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For this to be valid the macroscopic wave function sho
not extend beyond the first peak of theJ1 Bessel function at
zc51.8. Then, in the limit of a small number of atomshN
→0, the GPE has the Gaussian ground-state solutions

w~z!}exp~2z2/z0
2!, a5Ab, ~30!

with z052b21/4; this is only valid if z0,zc , or b@1. For
b5103 this givesa531.6, in agreement with Fig. 4 ashN
→0. In the limit of largehN we can use the Thomas-Ferm
solution @28# in which the kinetic-energy term is neglecte
This yields the solutions

uw~z!u25AhNb~12z2/zm
2 !, z,zm52S hN

b D 1/4

,

~31!

and aTF5AhNb. This solution is only valid if zm,zc
51.8, which for a given value ofb places an upper bound o
the scaled number of atomsn

n5hN,b. ~32!

In Figs. 4 and 5 we have restrictedn,950, in accordance
with the above upper bound, and the wave functions in F
5 are all vanishingly small in the regionz.zc51.8. As an
example, forn543 andb5103 the Thomas-Fermi solution
predictszm50.9, which is smaller than the spatial extent
the wave function~dashed line! in Fig. 5, andaTF5207 in
comparison toa5250 from the exact solution in Fig. 4. Thi
discrepancy between the exact and approximate solution
not surprising, as we used a parabolic approximation of
optical potential in the Thomas-Fermi solution. However, t
Thomas-Fermi theory captures the trends of the solution

V. SUMMARY AND CONCLUSIONS

Bessel light beams have unusual properties in the opt
domain. They have an immunity to diffraction over extend
distances, and offer an elongated and narrow central reg
These features give them significant advantages over s
dard Gaussian light beams for the studies presented in
work. We have shown that zeroth-order Bessel light bea
generated by the use of an axicon offer an excellent met
by which to generate optical dipole traps for on
dimensional quantum gases. Typically, the ratiol between
longitudinal and transverse trap frequencies for such a t
realized with a Bessel beam, is nearly two orders of mag
tude smaller than that which can be achieved with a Gau
ian beam. Furthermore, we have shown that the Bessel b
offers a potential route for an experimental realization o
Tonks gas of inpenetrable bosons. Additionally we ha
studied the waveguiding properties of a quantum gas alon
J1 ~hollow! Bessel light beam. The nondiffracting nature a
small central minimum size here make it an excellent a
optical waveguide. Such waveguiding could be used to re
ize the velocity filtering of cold atoms and all-optical ato
interferometers, and also offer a route to load magne
waveguides with quantum degenerate samples.

l
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