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ABSTRACT. Certain classes of engineering systems must be
designed to survive operational shock environments which
are difficult or impossible to describe in a comprehensive
fashion. The shock response spectrum (SRS), a common
measure of the severity of a shock signal, is frequently used
in this situation as a standard for system qualification. Typi-
cally, the SAS is calculated by performing a series of
extreme-level shock tests that are assumed to envelope the
operating environment of the system. If the system can sur-
vive these tests, the SRS from each test are combined in
some conservative manner lo derive a single spectrum.
Often, a deterministic safety factor is then applied to this
composite SRS, resulting in a reference specification for
design qualification. It has been shown, however, that use of
the SRS in this manner can lead fo an imbalance in marginal
reliability. Nevertheless, this technique remains the industry’s
standard means of assessing system response in a shock
environment. In this article, techniques utilizing computa-
tional probabilistic methods are proposed to derive a analyti-
cally-based reference SRS that prescribes a balanced level
of marginal reliability. In addition, it provides a technically
sound procedure for constructing design specifications in a
nondeterministic shock environment. For illustrative pur-
poses, the method is applied to a soil penetration system
consisting of a nonlinear transient dynamics calculation per-
formed on a complex finite element structural mechanics
model, coupled with a spherical cavity expansion representa-
tion of the soil medium.

NOMENCLATURE
D Soil parameter random variable
E[-1 Operator of mathematical expectation

fy(y) Probability Density Function (FDF) of ¥
Fyty)  Cumulative Distribution Function (CDF) of ¥
g(-) Memoryless deterministic function

M Nondeterministic input/output map or mode!

"y Number of points in frequency vector

", Number of samples used to compute PC terms
N Number of PC terms retained in expansion

py. p, Probability that internal component survives/fails
PCE  Polynomial Chaos Expansion

vy Correlation coefficient betweenr.v.’s X and Y

3 Specified marginal reliability

SRS Shock Response Spectrum
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U; Predicted response at i th frequency

u, Af;) Reference SRS at i th frequency
U System reliability metric

o Angle-of-attack random variable

' kth PC coefficient of output process

I, k th multivariate Hermite polynomial

By, Oy Mean and standard deviation of r.v. X

& Standard, normal random variable

o n -dimensional random vector of model parameters

1. OVERVIEW OF NONDETERMINISTIC ANALYSIS

To establish the context for the ensuing discussion, a general
framework is presented for the nondeterministic analysis of a
system, as depicted in Fig. 1. Here, M is an analytical model
defining the map between input F and output U where in
general, both M and F are nondeterministic entities. In addi-
tion, the model maps an n -dimensional parameter vector @,
containing components that are assumed to be nondetermin-
istic, to the response space.

When considering this problem in a probabilistic framework,
all statements of interest that address the uncertainty of the
output U can be written in a statistical form, E[g(U)], where
E[-] is the operator of mathematical expectation and g(-) is
an appropriate deterministic function. With this in mind,
consider

E{gi)] = EyEG(E{g(UNM, ®}HM)]. M

The three layers of conditicnal expectation in Eg. (1) repre-
sent the three major components needed to accurately
analyze a nondeterministic system. Statements from the
innermost conditional expectation are conditioned on the
model and internal parameters. Hence, the calculations are
performed when one model and one set of internal parame-
ters are considered (i.e., M = m and ® = ¢). At this level,
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Figure 1: General framework for nondeterministic
analyses.
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statistical procedures are required only if the input F is
nondeterministic. Continuing, the probabilistic character of ¢
has been utilized at the second layer of Eq. (1). This is what
has been commonly referred to as the “uncertainty propaga-
tion” problem; there are many computational tools to address
this. It is at this level where most nondeterministic problems
are solved, including the one under consideration. The third
and outermost conditional expectation of Eq. (1) deals with
the uncertainty in the model itself. This is a more difficult topic
and is an area of continued research.

Clearly, the analysis layer, which is concerned with isolating
and assessing the effects of parametric uncertainty, is a key
component of a global assessment. This issue is the focus of
the remaining discussion.

2. APPLICATION

A schematic of a penetration system as it impacts the ground
is shown in Fig. 2, where v and y are the velocity vector and
impact angle of the system, respectively, taken to be deter-
ministic. A considerable amount of uncerainty exists,
however, in the knowledge of a particular soil paramster, D .

* In addition, the angle-of-attack, a, is nondeterministic due to
uncertainty in the knowledge of the wind conditions. For this
application, a and D were modeled as independent random
variables with normal and lognormal distributions, respec-
tively, as shown in Fig. 3. Hence, in the terminology of Eq. (1),
¢ = {aD} e R™.

The engineering question of interest is whether or not the
internal component C will survive the shock environment
induced by the penetration event. For historical reasons, the
response measure of interest is the shock response spectrum
(SRS) of the acceleration of the centroid of component C.
Success, or survival, is achieved when the predicted SRS is
bounded from above by a reference shock specification
throughout the frequency range of interest.

U = SRS
M(e ;{o.D}) —P

wind

L f

Figure 2: Problem formulation for the
penetration system.
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Figure 3: Density functions of random vector ©.

As noted, this system must survive operational shock envi-
ronments  which are impossible to describe in a
comprehensive fashion. As a result, the reference SRS
referred to above is typically calculated by performing a
series of extreme-level shock tests that are assumed to enve-
lope the operating environment. If the system can survive
these tests, the SRS from each test are combined in some
conservative manner, then coupled with an overall safety
factor, to derive a reference specification for future design
qualification. It has been shown, however, that use of the
SRS in this manner can lead to an imbalance in marginal reli-
ability [5-7]. Nevertheless, it remains the industry’s standard
means of assessing system response in a shock
environment.

PRONTO3D [2], a nonlinear, transient dynamics finite
element code developed at Sandia National Laboratories,
coupled with a spherical cavity expansion mode! of the soil-
structure interaction [11], was used to calculate the predicted
transient acceleration response of C during the penetration
event. Filtering routines in MATLAB [10] were then used to
compute the corresponding frequency-domain SRS. Each
function evaluation using this complex, cascaded system
mode! required over 33 CPU hours on a SUN Ultra Il worksta-
tion. This fact motivated the use of approximations to the
design space, which were developed using Box-Behnken
design of experiment methods [3]. Hence, in the notation of
Fig. 1, the mode!, M, is a polynomial response surface,
quadratic in « and D, that approximates the cascaded
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Figure 4: The model M : a complex, cascaded system.

system of PRONTQ3D, the cavity expansion model of the
soil, and the MATLAB filtering routines. This model structure
is shown graphically in Fig. 4.

3. PREVIOUS WORK

The overall goal is to estimate p_, the probability that internal
component, C, survives. In previous work [5], the authors’
approach was to define a series of outputs

U; = SRS(FD, i = 1,2, ..., @)

where f; denotes the i th component of the frequency vector,
discretized over n, points. Reliability- and sampling-based
methods, in conjunction with the model, M, were then
employed to compute corresponding marginal cumulative
density functions (CDFs) F U’_(u,.) poi=12, 0. Upon
comparing to a reference, denoted Upgs, at each frequency
line one could then make a statement regarding the proba-
bility of exceeding «,, . In this regard, the frequency-wise or
marginal reliability is defined to be

5= PU S (f) = Fylu f), i= 1,2, (3)

Numerical differentiation of these marginal CDFs provide the
corresponding marginal probability density functions (PDFs),
two of which are illustrated in Fig. 5. The imbalance in reli-
ability over frequency is readily apparent: at f, = 30 H:
there is a nonzero probability of exceeding «,,, (ie., 5,>0),
while at f, = 100 H: the probability of exceeding the refer-
ence SRS is very small (ie.,, 5, is near zero). Hence, this
test-based specification exhibits conservative behavior over
some frequency bands, but nonconservative behavior over
others. This can be partly attributed to the lack of detail
present in modeling both the physical and probabilistic
elements of the problem. In addition, in using this method to
examine the marginal distributions of the SRS, no knowledge
of the correlation between U, and U, is attained. Hence,

SRS (g)

Natural Frequency (Hz)

Figure 5: Frequency-wise probability of exceeding
the reference SRS.

there is no way to draw accurate conclusions regarding the
probability of failure of the overall system.

As an alternative, in [6] the authors defined the scalar output

U=

min (U0~ U}, “4)
! .

where U is the predicted SRS over the entire frequency
band. The probability that the internal component C will not
survive the penetration event can then be approximated by

ps = l-p, = PU<0) = Fy(0). (5)
The identical methodologies were employed under this
framework to estimate F H(m, and hence, p,. Results from
this approach are summarized in Fig. 6. While this method-
ology facilitates a system reliability assessment, the
imbalance over frequency evident in Fig. 5 is concealed in the
analysis.

To address the shortcomings of both of the schemes outlined
above, the polynomial chaos expansion (PCE) was intro-
duced in this framework in [7] and employed to the same
application. With this framework in place, both 35,
i =1,2....,n,,and p, can be readily computed. in addition,
it can be shown that an analytically-based « ., can be
designed so as to specify a balanced level of marginal reli-
ability over the frequency range of interest.

The PCE is one of the key elements of the stochastic finite
element method, as developed in [9]. It relies upon the notion
that random processes are mathematically well-defined
mappings assumed to satisfy certain criteria. Among them is
the notion that a real random variable (r.v.) is a deterministic
measurable function which maps the sample space of
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Figure 6: CDF of U .

random events to the real line. It is this attribute of measur-
ability that provides the foundation for defining a Hilbert
space, #, of square-integrable, measurable functions. This
teature also establishes the foundation for a function approxi-
mation theory in ¥ that directly parallels the path taken in a
deterministic finite element approach with, in the stochastic
case, an inner product operator that is given by mathematical
expectation and the norm generated by this inner product
(see [8)]).

The result of this theoretical background is that finite-dimen-
sional series approximations can be made for both the input
and output random processes that can be shown to converge
weakly to the functions they replace. Consider the following
orthogonal decompositions, a special case of the general
PCE formulation where the input and output quantities are
vectors of random variables

N
o@) = 0®)" = Y &,I({& ), and
k=0

(6)

N
U0 = U, 8" = T v (NTLED. @

k=0
Here, T,({E,}) are defined to be multi-variate Hermite poly-
nomials in the sequence of standard normal r.v.’s, {§;}. The
{3,} are defined on a sample space Q with elements 6,
here and throughout; the explicit notation of dependence on
8 is suppressed to simplify notation.

It can be shown [7] that the solutions for the Fourier coeffi-
cients in the above expansions are

or, unr
0T - 0T @
ro rp

For this application, the expectations in Eq. (8) were approxi-
mated using a Monte Carlo scheme, where arithmetic means
were substituted for the expectations

n, n,

z ‘D(j)rij) Z ll(f)(j)rij)
(Dk:j_":l____ and Yk(f)zj,l.;—'

o ; ’ 52
sy’ 3y
j=1 j=1

where, 7, ) and u(f)”) denote the jth -

, » Ty jthoutof n_ real
izations of the corresponding random quantities. Computing
these coefficients via Eq. (9) proves to be a rather complex
process, as shown in Fig. 7. To summarize, given second
order statistics U, 6, Ly, Gp. ryp and samples of two stan-
dard normal uncorrelated rv.’s, {£,&,}, the Nataf
transformation from [4] can be utilized to produce samples of
o and D, from which the coefficients of the expansion can
be calculated. Note that to use Eq. (8) to compute the Fourier
coefficients, @, , one must evaluate I‘i’)({il,él}) and ¢!
with the identical sample set of {£,&,}. A similar scheme is
used to generate the coefficients of the response process,
¥} . The sampie set {&,,%,} is first regenerated, but must
remain fixed throughout the remaining steps. Samples of o
and D can now be computed directly via Eq. (6), then passed
through the model M to derive samples of the output process
U(y) . After computing I'({,, E,}) over this new sample set,
Eq. (8) can be utilized to solve for the output coefficients.

C)

" Again, the key issue in this process is the use of a consistent

4.

sample set of {§,,&,}, which is further highlighted by the
dashed lines in the algorithm of Fig. 7.

Brute-force Monte Carlo sampling proves to be an inefficient
means of calculating these coefficients. However, because
M (utilizes approximate response surface medels, as illus-
trated in Fig. 4, computing many samples of the output U(/)
remains tractable. Future research will focus on more efficient
methods to compute v,(f) , which will significantly reduce the
number of function evaluations required for convergence, and
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Figure 7: Algorithm used to apply the PCE.




thus allow one to bypass the need for approximate response
surface models. '

Once the N coefficients are computed, the expansions can
be utilized to create realizations of the input and output as
depicted in Figs. 8 and 8 with ¥ = 4. In addition, an estimate
of the correlation structure of the output random process can
be computed. It is important to note that by employing the
PCE technique, one arrives at an approximation to the output
random process SRS, and not simply statistical information
like that which is presented in Figs. 5-6. As a result, one has
a more complete representation of the nondeterministic
response, which can be exploited for various uses.

4. PROBABILISTIC DESIGN OF REFERENCE SHOCK

In this section, a process is developed which exploits the
availability of the SRS random process to produce an analyti-
cally-based reference SRS that exhibits a prescribed level of
marginal reliability at each frequency. In general, this
prescribed level can be permitted to vary with frequency,
allowing one to specify frequency bands where the system
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Figure 9: Polynomial chaos expansion of SRS
random process: (a) 100 realizations, and (b)
the estimated correlation structure.

must be more reliable, as well as frequency bands where it
can be less reliable. Here, however, the marginal levels, 5,
were chosen to be equal over the entire frequency range;
thus ensuring a balanced marginal reliability,
FU,("ref(fi)) =5=35,i= 1,2,...,nf. (10)
To estimate the CDF of U, at a point u;, one can compute 7,
samples of the response via the PCE expansion derived in

Eq. (7), sort the realizations by magnitude, and then apply the
following relation [1]

(n

0 u; < u;
: 3 L+l
Foud = | £ w® ey <tV (1)
1 n‘s
(n;)
1 wzu
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where u are values of the ordered samples.

With this constant marginal reliability 5 specified, one can
solve for the corresponding reference SRS by inverting Eq.
(10)

uref(fi) = Fz‘l(S'), i=1.2.. (12)

L re
Note that Eqg. (12) involves the inverse CDF of U;, which is
not explicitly known. However, by solving
Fr-Fy® =0, (13)
for 5, in conjunction with Eq. (11) via an iterative root finding
method, where F* is known, one can estimate F Z,'_(s) .

Once u,,, has been calculated, Eq. {5) can be used to esti-
mate the probability of failure for the system. If this failure
probability is unacceptable, the process must be repeated
with a revised 5. Thus, this process can be posed as an iter-
ative probabilistic design procedure with the following goal:
for a specified target p ., find the reference SRS that will give
a marginal reliability 5 that is constant over frequency. The
algorithm of Fig. 10 summarizes the steps required.

5. RESULTS

To illustrate this technique, assume the design specifications
are such that the target probability of failure is 1 in 1000, i.e.,
p,/~ = 0.001. With an initial guess of 5 = 0.999, after five
iterations of the algorithm, convergence is attained at a solu-
tion given by

py = p;* = 0001, 5 = 09997. (14)

The result of this probabilistic design is shown in Fig. 11,
where it is evident that the test-based reference is nonconser-
vative at low frequencies, but becomes conservative at 100
Hz and beyond. Further, as loosely illustrated by the collec-
tion of realizations shown, there is a fairly high probability of
exceeding the reference SRS in the 20-80 Hz range,
thereby leading to a high probability of component failure.

1. Specify target probability of failure, ps*, and conver-
gence tolerance €.

Choose marginal refiability 5.
Solve for w,, (f), i = 1.2..., ny via Eqg. (12).
Solve for U via Eqg. (4).

Evaluate Py via £q. (5) and compare to Pt

S T A

Repeat steps 2-5 until ij. - pj-*l <g.

Figure 10: Probabilistic design algbrithm.
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Figure 11: Analytically-based reference SRS.

This is consistent with the results presented in Figs. 5-6. In
contrast, the analytically-based reference takes a shape that
closely resembles the collection of realizations shown in Fig.
11. Hence, to the extent that the computational model, M , is
accurate, and assuming a and D are the only significant
sources of nondeterministic effects in the system, the anal-
ysis-based reference will not exhibit regions of
nonconservative behavior, nor lead to overtesting of the
design.

6. FUTURE WORK

Future work will focus on accelerating the convergence of the
Fourier coefficients of the PCE using stratified sampling
methods and various numerical integration techniques. In
addition, the authors wish to address the very important issue
of uncertainty in the computational model, M. Only then can
the outermost layer of ‘conditional expectation in Eq. (1) be
evaluated.

7. CONCLUSIONS

One of the key elements of the Stochastic Finite Element
Method, namely the polynomial chaos expansion, has been
utilized in a nonlinear shock and vibration application. As a
result, the computed response was expressed as a random
process, which is an approximation to the true solution
process, and can be thought of as a generalization to solu-
tions given as statistics only. This approximation to the
response process was then used to derive an analytically-
based design specification for component shock response
that guarantees a balanced level of marginal reliability.
Hence, this analytically-based reference SRS might lead to
an improvement over the somewhat ad hoc test-based refer-
ence in the sense that it will not exhibit regions of non
conservativeness, nor lead to overtesting of the design.
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