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Abstract: Quantitative measurements of the properties of laser filaments at 400nm are presented. Included
are measurements of the conical emission spectra, as well as the filament conductivity. Comparisons are made
for these phenomena with 800nm filaments.
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1. Introduction

Nonlinear propagation of ultrashort laser pulses in air has been a subject of great interest in recent years, with a large
amount of work being done at 800nm due to the availability of broadband IR laser materials. Recent studies have
begun to examine the nonlinear propagation of laser pulses at wavelengths other than 800nm [1,2]. In this paper we
present what to the best of our knowledge is the first rigorous measurements of the characteristics of laser filaments
at 400nm.

2. Experimental Setup

The laser system used for the measurements was a Ti:Sapphire 5TW custom design built for Sandia National
Laboratories by Continuum Corporation. The laser was run at 800nm with a compressed energy of -20mJ, in a
pulsewidth of 50fs. The frequency conversion to 400nm was performed with a 1mm thick BBO crystal, and the
residual 800nm light was removed by taking multiple reflections off of dielectric mirrors coated to be high reflectors
for 400nm. The conversion efllciency was -30%, resulting in a beam energy of 6mJ at 400nm. The beam was then
allowed to propagate freely over a range of 15m, without the use of any focusing or beam shaping optics.

3. Results

3.1 Basic Properties

With 6mJ of energy in the blue, a cluster of 2-3 filaments formed within the first 5m from the BBO crystal, and the
cluster propagated for 3-5m on average. Using the filament to ablate a gold substrate demonstrated a filament

diameter of 150~m. Energy measurements yielded 400 – 450pJ present in two filaments, suggesting an average of

-200pJ per filament. However visual inspection of bum patterns produced by the filaments on paper indicates that
one filament was much stronger than the other one.

3.2 Conical Emission Properties

The divergence angle of the conical emission from the 400nm filament was measured to be 3.5mrad (full angle).
The spectral content of the conical emission shows significant broadening from the linear propagation case, as is
shown in Figure la. Figure lb shows the spectral content of the conical emission from a filament generated by the
red seed beam from the same laser before the BBO crystal. As can be seen, the red conical emission is biased
towards the blue side of the spectrum, while the blue emission is biased towards the red,
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Fig. 1. (a.) Comparisonof the400nm spectrum with and without filament. (b.) Spectrum of the 800nm filament and conical emission,

3.3 Conductivity Measurements

The conductivity of the blue and red filaments was measured using a method similar to that proposed in Ref. [3].
The corresponding traces are shown in figures 2(a) and 2(b). As can be seen from the figures, the 800nm filament
produced a slightly larger signal than the 400nm filament (1. 1V vs. IV), implying that the electron density in the
ionized plasma column was slightly higher for the 800nm filament. It is interesting to note however, that a
measurement taken with the same apparatus on a single filament produced by a similar laser system (20mJ, 200fs)
produced a signal that was only 40mV. This implies that laser parameters such as pulsewidth play a more crucial
role in the ionization dynamic than wavelength in-the visible region.
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Fig. 2. (a.) Conductivity signal for the 800nm filament. (b.) Conductivity of the 400nm filament.
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statistical procedures are required only if the input F is
nondeterministic. Continuing, the probabilistic character of CP
has been utilized at the second layer of Eq. (1). This is what

has been commonly referred to as the ‘uncertainty propaga-
tion” problem; there are many computational tools to address
this. It is at this level where most nondeterministic problems

are solved, including the one under consideration. The third
and outermost conditional expectation of Eq. (1) deals with
the uncertainty in the model itself. This is a more difficult topic
and is an area of continued research.

Clearly, the analysis layer, which is concerned with isolating
and assessing the effects of parametric uncertainty, is a key
component of a global assessment. This issue is the focus of
the remaining discussion.

2. APPLICATION

A schematic of a penetration system as it impacts the ground
is shown in Fig. 2, where v and y are the velocity vector and
impact angle of the system, respectively, taken to be deter-
ministic. A considerable amount of uncertainty exists,
however, in the knowledge of a particular soil parameter, D.
In addition, the angle-of-attack, a, is nondeterministic due to
uncertainty in the knowledge of the wind conditions. For this
application, a and D were modeled as independent random
variables with normal and Iognormal distributions, respec-

tively, as shown$ Fig. 3. Hence, in the terminology of Eq. (1),
@={a D] =91-.

The engineering question of interest is whether or not the
internal component C will survive the shock environment
induced by the penetration event. For historical reasons, the
response measure of interest is the shock response spectrum
(SRS) of the acceleration of the centroid of component C.
Success, or survival, is achieved when the predicted SRS is
bounded from above by a reference shock specification
throughout the frequency range of interest.
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Figure 2: Problem formulation for the
penetration system.
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Figure 3: Density functions of random vector Q.

As noted, this system must survive operational shock envi-
ronments which are impossible to describe in a
comprehensive fashion. As a result, the reference SRS
referred to above is typically calculated by performing a
series of extreme-level shock tests that are assumed to enve-
lope the operating environment. If the system can survive
these tests, the SRS from each test are combined in some
conservative manner, then coupled with an overall safety
factor, to derive a reference specification for future design
qualification. It has been shown, however, that use of the
SRS in this manner can lead to an imbalance in marginal reli-
ability [5-7]. Nevefiheless, it remains the industry’s standard
means of assessing system response in a shock
environment.

PRONT03D [2], a nonlinear, transient dynamics finite
element code developed at Sandia National Laboratories,
coupled with a spherical cavity expansion model of the soii-
structure interaction [1 1], was used to calculate the predicted
transient acceleration response of C during the penetration
event. Filtering routines in MATLAB [1O] were then used to
compute the corresponding frequency-domain SRS. Each
function evaluation using this complex, cascaded system
model required over 33 CPU hours on a SUN Ultra II worksta-
tion. This fact motivated the use of approximations to the
design space, which were developed using Box-Behnken
design of experiment methods [3]. Hence, in the notation of
Fig. 1, the model, itf, is a polynomial response surface,
quadratic in a and D, that approximates the cascaded
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Figure 4: The modei M: a complex, cascaded system.

system of PRONT03D, the cavity expansion model of the
soil, and the MATLAB filtering routines. This model structure
is shown graphically in Fig. 4.

3. PREVIOUS WORK

The overall goal is to estimate p., the probability that internal
component, C, survives. In previous work [5], the authors’
approach was to define a series of outputs

U; = SRS(ji), r’ = 1,2, .. ..nf , (2)

where fidenotes the i th component of the frequency vector,
discretized over n, points. Reliability- and sampling-based
methods, in conjunction with the model, M, were then
employed to compute corresponding marginal cumulative
density functions (CDFS) Fu,(ui), i = 1,2, . . .. n~. Upon

comparing to a reference, denoted Ur,f, at each frequency
line one could then make a statement regarding the proba-
bility of exceeding uref. [n this regard, the frequency-wise or
marginal reliability is defined to be

Numerical differentiation of these marginal CDFS provide the
corresponding marginal probability density functions (PDFs),
two of which are illustrated in Fig, 5. The imbalance in reli-
ability over frequency is readily apparent: at fl = 30 H:
there is a nonzero probability of exceeding urcf (i.e., 31> O),

while at f, = 100 H: the probabili~ of exceeding the refer-
ence SRS-is very small (i.e., j, is near zero). Hence, this
test-based specification exhibits- conservative behavior over
some frequency bands, but nonconservative behavior over
others. This can be partly attributed to the lack of detail
present in modeling both the physical and probabilistic
elements of the problem. In addition, in using this method to
examine the marginal distributions of the SRS, no knowledge
of the correlation between U, and U2 is attained. Hence,
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Figure 5: Frequency-wise probability of exceeding
the reference SRS.

there is no way to draw accurate conclusions regarding the
probability of failure of the overall system.

As an alternative, in [6] the authors defined the scalar output

U = min (u,,f - U), (4)
f

where U is the predicted SRS over the entire frequency
band. The probability that the internal component C will not
survive the penetration event can then be approximated by

Pj= l-P.=p(~gO =FU(O. (5)

The identical methodologies were employed under this
framework to estimate Fn(ii), and hence, pf. Results from
this approach are summarized in Fig. 6. While this method-
ology facilitates a system reliability assessment, the
imbalance over frequency evident in Fig. 5 is concealed in the
anal ysis.

To address the shortcomings of both of the schemes outlined
above, the polynomial chaos expansion (PCE) was intro-
duced in this framework in ~] and employed to the same
application. With this framework in place, both ~i,

, . . . . .. n,, and p, can be readily computed. In addition,i=l?

it can be shown that an analytically-based U,ef can be
designed so as to specify a balanced level of marginal reli-
ability over the frequency range of interest.

The PCE is one of the key elements of the stochastic finite
element method, as developed in [9]. It relies upon the notion
that random processes are mathematically well-defined
mappings assumed to satisfy certain criteria. Among them is
the notion that a real random variable (r.v.) is a deterministic
measurable function which maps the sample space of

.
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Figure 6: CDF of ~.

random events to the real line. It is this attribute of measur-
ability that provides the foundation for defining a Hilberl
space, X, of square-integrable, measurable functions. This
feature also establishes the foundation for a function approxi-
mation theory in M that directly parallels the path taken in a
deterministic finite element approach with, in the stochastic
case, an inner product operator that is given by mathematical
expectation and the norm generated by this inner prqduct
(see [8]).

The result of this theoretical background is that finite-dimen-
sional series approximations can be made for both the input
and output random processes that can be shown to converge
weakly to the functions they replace. Consider the following
orthogonal decompositions, a special case of the general
PCE formulation where the input and output quantities are
vectors of random variables

N

WV= W3)N = ~ @krk({g(}), and (6)

L=o

N

W, e)- W, e)Ns~ Ykmrk({g,}). (7)

k=o

Here, rk({ ~,}) are defined to be multi-variate Hermite poly-
nomials in the sequence of standard normal r.v.’s, {t,}. The

{<1} are defined on a sample space Q with elements e,
here and throughout; the explicit notation of dependence on
8 is suppressed to simplify notation.

It can be shown [7] that the solutions for the Fourier coeffi-
cients in the above expansions are

For this application, the expectations in Eq. (8) were approxi-
mated using a Monte Carlo scheme, where arithmetic means

were substituted for the expectations

j=l j=l

where, O(f), r!) and u(f)‘J) denote the j th out of n. real-
izations of the corresponding random quantities. Computing ~
these coefficients via Eq. (9) proves to be a rather complex
process, as shown in Fig. 7. To summarize, given second
order statistics I.La,Oa, VD, cr~, r=D and samples of two stan-
dard normal uncorrelated r.v.’s, {~,><z}, the Nataf
transformation from [4] can be utilized to produce samples of
a and D, from which the coefficients of the expansion can
be calculated. Note that to use Eq. (8) to compute the Fourier
coefficients, @k, one must evaluate r~)({<l, ~1}) and O(j)
with the identical sample set of {g,, ~,}. A similar scheme is

used to generate the coefficients of ~he response process,

YJfl. The sample set {~lt <~} is first regenerated, but must
remain fixed throughout the remaining steps. Samples of a
and D can now be computed directly via Eq. (6), then passed
through the model M to derive samples of the output process
uw. After computing r({<,, ~z}) over this new sample set,

Eq. (8) can be utilized to solve for the output coefficients.
Again, the key issue in this process is the use of a consistent

sample set of {<l? ~2}, which is further highlighted by the
dashed lines in the algorithm of Fig. 7.

Brute-force Monte Carlo sampling proves to be an inefficient
means of calculating these coefficients. However, because
M utilizes approximate response surface models, as illus-
trated in Fig. 4, computing many samples of the output U(j3
remains tractable. Future research will focus on more et%cient

methods to compute Yk(j’), which will significantly reduce the
number of function evaluations required for convergence, and

\ —~

Figure 7: Algorithm used to apply the PCE.
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thus allow one 10 bypass the need for approximate response
surface models.

Once the N coefficients are computed, the expansions can
be utilized to create realizations of the input and output as
depicted in Figs. 8 and 9 with N = 4. In addition, an estimate
of the correlation structure of the output random process can
be computed. It is important to note that by employing the
PCE technique, one arrives at an approximation to the output

random process SRS, and not simply statistical information
like that which is presented in Figs. 5-6. As a result, one has
a more complete representation of the nondeterministic
response, which can be exploited for various uses.

4. PROBABILISTIC DESIGN OF REFERENCE SHOCK

In this section, a process is developed which exploits the
availability of the SRS random process to produce an analyti-
cally-based reference SRS that exhibits a prescribed level of
marginal reliability at each frequency. In general, this
prescribed level can be permitted to vary with frequency,
allowing one to specify frequency bands where the system

1’
,,

]

-4

a (deg)

Figure 8:
d (in)

Density estimates of input random

vector 0 using the PCE.
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Figure 9: Polynomial chaos expansion of SRS
random process: (a) 100 realizations, and (b)

the estimated correlation structure.

must be more reliable, as well as frequency bands where it
can be less reliable. Here, however, the marginal levels, ~i,
were chosen to be equal over the entire frequency range;
thus ensuring a balanced marginal reliability,

To estimate the CDF of Ui at a point Ui, one can compute n,
samples of the response via the PCE expansion derived in
Eq. (7), sort the realizations by magnitude, and then apply the
following relation [1]

[

o lfi<uy

FUJI,;) = $ My)<u; < U:i + ‘) , (11)

s

1
(n,)

1/; 2 u;

-5-



~here ~,(1), /{(2) (n, )

(1
. . . ..llr are values of the ordered samples. ,m

I ,----- . .

With this constant marginal reliability J specified, one can

solve for the corresponding reference SRS by inverting Eq.
(lo)

Note that Eq. (12) involves the inverse CDF of Ui, which is
not explicitly known. However, by solving

F,-- FU(S) = o, (13)

for 3, in conjunction with Eq. (11) via an iterative ~~~t finding
method, where F,* is known, one can estimate Fu (s).

Once U,c, has been calculated, Eq. (5) can be used to esti-
mate the probability of failure for the system. If this failure
probability is unacceptable, the process must be repeated
with a revised 3. Thus, this process can be posed as an iter-
ative probabilistic design procedure with the following goal:
for a specified target PJ, find the reference SRS that will give
a marginal reliability ~ that is constant over frequency. The
algorithm of Fig. 10 summarizes the steps required.

5. RESULTS

To illustrate this technique, assume the design specifications
are such that the target probability of failure is 1 in 1000, i.e.,
pi- = 0.001. With an initial guess of ~ = 0.999, after five
iterations of the algorithm, convergence is attained at a solu-
tion given by

Pf = Pf” = 0.001, ~ = 0.9997. (14)

The result of this probabilistic design is shown in Fig. 11,
where it is evident that the test-based reference is nonconser-
vative at low frequencies, but becomes conservative at 100
Hz and beyond. Further, as loosely illustrated by the collec-
tion of realizations shown, there is a fairly high probability of
exceeding the reference SRS in the 20-80 Hz range,
thereby leading to a high probability of component failure

1. Specify target probability of failure, pf* , and conver-
gence tolerance t.

2. Choose marginal reliability $.

3. Solve for u,df(f,), i = 1.2. .. ..n. via Eq. (12).

4. Solve for U via Eq. (4).

5. Evaluate ~~f via Eq. (5) and compare to p,”.

6. Repeat steps 2-5 until lpi - Pj’l <E.

:!,/ ‘.
. .

‘.

Figure 11: Analytically-based reference S/?S.

This is consistent with the results presented in Figs. 5-6. In
contrast, the analytically-based reference takes a shape that
closely resembles the collection of realizations shown in Fig.
11. Hence, to the extent that the computational model, iii, is
accurate, and assuming a and D are the only significant
sources of nondeterministic effects in the system, the anal-
ysis-based reference will not exhibit regions of
nonconservative behavior, nor lead to overtesting of the
design.

6. FUTURE WORK

Future work will focus on accelerating the convergence of the
Fourier coefficients of the PCE using stratified sampling
methods and various numerical integration techniques. In
addition, the authors wish to address the very important issue
of uncertainty in the computational model, Al. Only then can
the outermost layer of “conditional expectation in Eq. (1) be
evaluated.

7. CONCLUSIONS

One of the key elements of the Stochastic Finite Element
Method, namely the polynomial chaos expansion, has been
utilized in a nonlinear shock and vibration application. As a
result, the computed response was expressed as a random
process, which is an approximation to the true solution
process, and can be thought of as a generalization to solu-
tions given as statistics only. This approximation to the
response process was then used to derive an analytically-
based design specification for component shock response
that guarantees a balanced level of marginal reliability.
Hence, this analytically-based reference SRS might lead to

an improvement over the somewhat ad hoc test-based refer-
ence in the sense that it will not exhibit regions of
conservativeness. nor lead to overtesting of the design.

non

Figure 10: Probabilistic design algorithm.
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