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PPSLT:  A New Nonlinear Optical Material

• AFRL has supported the development of high-average power 
solid state lasers, often with operating wavelengths in the near-
infrared region of the spectrum 

• PPSLT can be used to shift the output wavelengths of these laser
systems to other regions of the spectrum to fill specific needs

• Shifting to shorter wavelengths (into the visible region of the 
spectrum) is useful for adaptive optics (589 nm sodium guide-
star radiation); compact visible sources also have great 
commercial potential (projection displays, biomedical 
instruments, etc.)

• Shifting to longer wavelengths (into the mid-infrared region of the 
spectrum) is useful for infrared counter-measures and remote 
chemical sensing
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Physical Properties Responsible for the Promise of PPSLT

• Stoichiometric lithium tantalate (SLT) is a ferroelectric 
material, which means the unit cell of the crystal has a 
permanent electric dipole moment and can be re-oriented 
by applying an electric field (“domain inversion”)

• By applying a patterned electric field, one can change a 
single crystal of SLT into a patterned material, 
periodically poled SLT (PPSLT); this patterning leads to 
an increase in the nonlinear optical performance of the 
material (“quasi-phasematching”, QPM)
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Physical Properties Responsible for the Promise of PPSLT
(Continued)

• In comparison with other ferroelectric materials, SLT has 
these advantages:
– it is less susceptible to optical damage, leading to more stable

output power at a given temperature and to lower operating 
temperatures

– lower electric fields are needed to achieve domain inversion, 
making it possible to produce thicker crystals with higher 
power-handling capability

– it has better transparency in the ultraviolet region of the 
spectrum, leading to the production of radiation with shorter 
wavelengths
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How to Fabricate and Test PPSLT Devices

• Procure wafer of stoichiometric lithium tantalate (SLT) from an 
appropriate vendor

• Cover one surface of wafer with a patterned insulator, then apply a 
metal overcoat to that pattern

• Apply a pulse of high voltage 

• Etch the wafer in hydrofluoric acid to reveal the domain pattern

• Dice the wafer into chips and polish the end faces

• Shine a high-power near-infrared laser into one end of the crystal 
and measure the visible radiation coming out the other end
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Periodic Poling Apparatus:  Schematic and Photograph

• Computer-controlled system for creating high-voltage pulses, recording 
current and voltage

• Wafer covered with patterned photoresist, Cr/Au on the plus-Z face; 
electrical contact using electrolyte-soaked lens tissue

• Voltage turned off automatically when desired charge or 
pulse length has been reached
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Scaling to Short Periods:  Macroscopic View

• Three-inch diameter, 0.5 mm thick wafers from Deltronic Crystal Industries
• Pattern (revealed by etching) contains grating-like structures with periods 

ranging from 5.8 µm to 11.2 µm

• Reproducible, wafer-scale poling process 
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Scaling to Short Periods:  Microscopic View

• Magnified pictures taken of the minus-Z face (the face which did 
not contain the patterned photoresist)

• QPM gratings with periods 10.8 µm (left), 7.6 µm (right); useful for 
generating yellow and green radiation, respectively

• Reasonable quality for these periods over a 50-mm length
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Scaling to Still-Shorter Periods:  Microscopic View

• QPM period = 6.0 µm; useful for generating blue-green radiation

• More work needed to achieve (or better) this quality on wafer scale
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Scaling to 2 mm Thickness:
Macroscopic, Microscopic Views

• 50 mm diameter, 2 mm thick wafers used
• QPM period = 17.4 µm; useful for frequency-doubling of telecom 

lasers

• Further work needed to minimize domain merges on wafer scale, 
and to scale the wafer diameter from 50 mm to 76.2 mm
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High Power Laser Tests:  Schematic and Photograph

• Q-Peak Nd:YLF input laser based on multi-pass slab (MPS) 
technology

• Average power up to 6 W at 1047 nm; can be operated in 
continuous-wave mode, or in a variety of pulse formats

• PPSLT crystals with three different lengths (10, 20, 30 cm) 
mounted inside resistively-heated oven
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Laser Testing:  Phase-Matching Curve

• SHG converts 1047 nm input radiation to 523.5 nm
• Power at 523.5 nm monitored as a function of temperature of 

PPSLT crystal; QPM grating with period of 7.4 µm, length of 30 mm

• Phase-matching temperature and bandwidth agree reasonably well 
with predictions based on published Sellmeier equation of Bruner
et al. (Optics Letters, 28, 194-196 (2003))
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Laser Testing:  Conversion Efficiency in
Continuous-Wave Regime

• SHG efficiency measured as a function of incident power at 1047 nm
• Measured powers corrected for Fresnel reflection losses

• Linear relationship observed, as expected when the input beam is not 
depleted by the interaction

• Fitted slope gives a device efficiency of 1.0%/W
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Laser Testing:  Calculation of
Effective Nonlinear Optical Coefficient

• Spatial profile of weakly-focused laser beam calculated from known beam 
properties using Gaussian beam propagation formulas

• Device efficiency given by the following equation:

where ω1h is the frequency of the fundamental beam, deff is the effective 
nonlinear coefficient, L is the interaction length, n1h and n2h are indices of 
refraction, and W0 is the laser spot size

• Calculated value of deff is 7.4 pm/V, close to the expected value of 
10.2 pm/V for an ideal QPM structure with perfect uniformity and perfect 
phasematching

• This value of deff can be used in predictions of device performance
• For comparison, periodically poled lithium niobate (PPLN) devices can 

have deff = 17 pm/V, but suffer from stability, power handling, and UV 
transparency issues
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Laser Testing:  Summary of Performance in
Continuous-Wave Regime

• 300 mW of green radiation generated, with no 
evidence of beam distortion due to photorefraction

300 mWSecond-harmonic power
5.5 WFundamental power
0.3%/W-cmηnor= ηdev/L
1.0%/Wηdev

3.0 cmChip length, L
1047 nmFundamental wavelength
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Laser Testing:  Conversion Efficiency in Pulsed Regime

• Data obtained for a variety of QPM periods, pulse formats, 
and crystal lengths

• Conversion efficiency levels off at ~30% in the 20 mm long 
chip, lower than expected based on the cw results; small 
phase-matching errors in the depleted-pump regime may 
be responsible
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Laser Testing: Summary of Best Performance
in Pulsed Regime

• 780 mW of green radiation generated
• Optical damage (surface and bulk) observed at the 

highest intensities; more work needed to understand 
its cause

39 µJSecond-harmonic pulse energy
780 mWSecond-harmonic average power
125 µJFundamental pulse energy
2.5 WFundamental average power
20 MW/cm2Fundamental peak intensity
31%Peak conversion efficiency
2.0 cmChip length
100 nsLaser pulse length
20 KHzLaser repetition rate
1047 nmFundamental wavelength
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MWIR Absorption Spectra of SLT, CLN

• Optical parametric oscillators (OPOs) based on congruent lithium niobate 
(CLN) are limited to wavelengths less than 4 microns because of absorption; 
reliable absorption data for SLT are not available in the literature

• FTIR spectra taken on X-cut, 1 mm thick wafers of SLT, CLN

• SLT not significantly more transparent than CLN in the 
4.0-4.5 micron wavelength range; therefore, PPSLT is not 
promising for extending OPOs to longer wavelengths
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Summary and Conclusions

• Periodic poling of commercially available SLT wafers from two 
suppliers (Oxide Corporation and Deltronic) carried out 

• Wafer-scale poling achieved for periods as short as 7.3 µm on 
0.5 mm thick substrates

• Promising results obtained for periods as short as 5.8 µm on 
0.5 mm thick substrates, and for periods as short as 17.4  µm on 
2.0 mm thick substrates

• SHG of a Nd:YLF laser in PPSLT has produced 300 mW of average 
green power in the cw regime, with a device efficiency of 1.0%/W

• SHG has also produced 780 mW of average green power in the 
pulsed regime, with a conversion efficiency of 31%

• Future work will include extending short-period poling to thicker 
substrates, examining scaling to higher average powers
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