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ABSTRACT

The purpose of this study was to develop a complete current transport model for carbon
nanotube field effect transistors (CNT-FETs) applicable in the analysis and design of integrated
circuits. The model was derived by investigating the electronic structure of carbon nanotubes
and using basic laws of electrostatics describing a field effect transistor.

We first derived analytical expressions for the carrier concentration in carbon nanotubes
for different chiral vectors (n,m) by studying and characterizing their electronic structure.
Results showed a strong relation to the diameter and wrapping angle of carbon nanotubes.

The charge distribution in a CNT-FET is characterized from the charge neutrality and
potential balance conditions. Mathematical techniques are used to derive analytically
approximated equations describing the carbon nanotube potential in terms of the terminal
voltages. These equations are validated by comparing them with the respective numerical
solutions; furthermore, the expressions for the carbon nanotube potential are used to derive
current transport equations for normal and subthreshold operations. Threshold and saturation
voltages expressions are each derived in the process and the I-V characteristics for CNT-FETs
are calculated using different combinations of chiral vectors. Results showed a strong
dependence of the I-V characteristics on the wrapping angle and diameter of carbon nanotubes,
as expected from the carrier concentration modeling. Results were also compared with
available experimental data showing close agreement within the limitations and approximations
used in the analysis.

In addition, the current model equations were used to generate the voltage transfer
characteristics for basic logic circuits based on complementary CNT-FETs. The voltage

transfer characteristics exhibit characteristics similar to the voltage transfer characteristics of

xi



standard CMOS logic devices, with a sharp transition near the logic threshold voltage
depending on the input conditions. A small-signal radio frequency (rf) model was also
developed and it is shown to have cut-off frequencies in the upper GHz range with a strong
dependence on the chiral vector and corresponding transconductance (g;,).

Finally, due to the rapid growth of carbon nanotubes as bio- and chemical sensing
devices, we have also presented, using our current model equations, possible methods to

interpret and analyze CNT-FETs when utilized as biosensors.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Carbon Nanotubes

In 1960, Bacon of Union Carbide [1] reported observing straight hollow tubes of carbon
that appeared as graphene layers of carbon. In 1970s, Oberlin et al., [2] observed these tubes
again by a catalysis-enhanced chemical vapor deposition (CVD) process. In 1985, random
events led to the discovery of a new molecule made entirely of carbon, sixty carbons arranged
in a soccer ball shape [3]. In fact, what had been discovered was an infinite number of
molecules: the fullerenes, Ceo, C79, Csa, etc., every molecule with the characteristic of being a
pure carbon cage. These molecules were mostly seen in a spherical shape. However, it was
until 1991 that lijima [4] of NEC observed a tubular shape in the form of coaxial tubes of
graphitic sheets, ranging from two shells to approximately 50. Later, this structure was called
multi-walled carbon nanotube (MWNT). Two years later, Bethune et al., [5] and Iijima and
Ichihashi [6] managed to observe the same tubular structure, but with only a single atomic layer
of graphene, which became known as a single-walled carbon nanotube (SWNT).

Semiconductor Research Corporation (SRC) in its International Technology Roadmap of
Semiconductors (ITRS 2003) report has refereed to several non-classical devices, which could
be the candidates of future technology as the end of Moore’s law approaches (~2020). Carbon
nanotubes (CNTs) are being explored extensively as the structure material for making future
CMOS devices and circuits [7-9]. One of the interesting features of a carbon nanotube is that it
can be metallic or semiconducting with a bandgap depending on its diameter [10]. Since CNTs
are planar graphene sheets wrapped into tubes, electrical characteristics vary with the tube

diameter and the wrapping angle of graphene [11]. Carbon nanotubes are classified in two
1



categories, multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes
(SWNTs). Single-walled nanotubes are one-dimensional graphene sheets rolled into a tubular
structure of nanometer size with properties very similar to graphene [12]. These SWNTs are
one dimensional metals or semimetals with properties determined by their chiral vector [13].
Multi-walled nanotubes on the other hand, exhibit the same properties as SWNTs, however
while SWNTs consist of one shell, MWNTs comprise multi-shells of graphene sheets rolled
into a tubular structure [14].
1.2 Synthesis of Carbon Nanotubes

Following the rapid advancement of carbon nanotubes and applications, different
techniques to produce carbon nanotubes have been developed. Carbon nanotubes can be
fabricated using the following techniques: arc discharge, laser ablation, high-pressure carbon
monoxide (HiPCO), and chemical vapor deposition (CVD) methods. Among these techniques,
CVD method has shown the best performance towards CNT-FET applications.
1.2.1 Arc Discharge

This was the first available method to fabricate carbon nanotubes. An electric arc
discharge is an electrical breakdown of a gas producing a plasma discharge, very similar to a
spark, which is the flow of current through a nonconductive medium such as the air or an
insulator. In a conventional carbon arc discharge fabrication, a plasma discharge is generated in
a small gap between two graphite electrodes. In this method, carbon nanotubes are produced at
the core in the cathode deposit [15].
1.2.2 Laser Ablation

A standard laser ablation process involves a block of graphite mixed with a catalytic
metal, such as Co, Pt, Ni, Cu, etc. The composite block is formed by mixing graphite with the

catalytic metal in a tube furnace heated to about 1473 K [16]. The graphite block is then
2



targeted with a laser and argon (Ar) gas is pumped in the direction of the laser. As the laser
ablates the target, carbon nanotubes are formed and are carried by the gas flow onto a cool
copper collector.

1.2.3 High Pressure Carbon Monoxide (HiPCO)

The HiPCO is a technique that produces single-walled carbon nanotubes in a continuous
gas flow phase. This process uses CO as the source of carbon and Fe(CO)s as the catalyst
precursor. The carbon monoxide flows into a heated reactor where it gets mixed with a small
amount of Fe(CO)s yielding single-walled carbon nanotubes. The size and diameter can be
roughly controlled by regulating the pressure of the CO [17].

1.2.4 Chemical Vapor Deposition

A typical CVD process involves a substrate, which is exposed to one or more volatile
precursors, which then react and decompose on the substrate surface producing the desired
deposit. Byproducts are removed by a gas flow through the reaction chamber. Carbon
nanotubes are produced generally by the reaction of a gas containing carbon such as ethylene,
acetylene, ethanol, etc. with a metal catalyst (cobalt, nickel, iron, etc.) at temperatures above
700 °C [18].

1.2.5 Flame Synthesis

Recent work has shown that flame synthesis is an inexpensive large scale method to
produce single-walled carbon nanotubes [19,20]. In a flame synthesis process, the combustion
of hydrocarbon fuel is responsible to produce enough heat to establish the required temperature
environment for the process and to form small aerosol metal catalyst islands. Single-walled
carbon nanotubes are grown in these catalyst islands in the same way as in the arc discharge

and laser ablation processes [21,22].



1.3  Structure of Carbon Nanotubes

There are four types of natural occurring carbon: diamond, graphite, ceraphite, and
fullerenes. Fullerenes are molecules formed entirely of carbon and take the shape of a hollow
sphere, ellipsoid, or a tube. Fullerenes, which take the shape of a tube are called buckytubes or
nanotubes.

Carbon nanotubes exhibit promising mechanical and electrical properties. They can be
pictured as a result of folding graphene layers into a tubular structure as seen in Fig. 1.1(a).
These cylinders form a carbon nanotube and they can be single-walled or multi-walled
depending on the number of shells that form the tubular structure [14]. Single-walled nanotubes
(SWNTs) are composed of one shell of carbon atoms. Multi-walled nanotubes (MWNTs) have
multiple nested shells of carbon. In addition, single-walled carbon nanotubes tend to adhere
strongly to each other forming ropes or bundles of nanotubes as shown in Fig. 1.1(b) exhibiting
physical properties of both metallic and semiconducting materials.

SWNTs have risen as the most likely candidates for miniaturizing electronics beyond
current technology. They exhibit phenomenal electrical and mechanical properties. The most
fundamental application of SWNTs is in field effect transistors (FETs). N-type carbon
nanotube field effect transistors and p-type carbon nanotube field effect transistors have been
made [23], showing a behavior similar to current MOSFETs. The work presented in the
dissertation will focus on carbon nanotube field effect transistors (CNT-FETs) made using
single-walled carbon nanotubes (SWNTs).

1.4 Properties of Single-Walled Carbon Nanotubes

Single-walled carbon nanotubes are best characterized by its chirality or chiral vector.

The chirality is an adapted concept uniquely of each type of nanotube that determines its

properties and diameter [13]. The chirality is represented with a pair of indices (n,m) called the
4
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chiral vector. The chiral vector is a line that traces the CNT around its circumference from one

carbon atom, called the reference point (point O) back to itself (point C) in Fig. 1.2. [24,25].

The circumference described by the line OC in Fig. 1.2 is best represented with the following
mathematical expression,

C,=na, +ma, , (1.1)
where a; and a; are the unit vectors for the graphene hexagonal structure, and (n,m) are integers
that represents the number of hexagons away from the reference point (O) to point (C), in the a;
and a, directions, respectively (Fig. 1.2). The schematic representation of a SWNT in two
dimensions is shown in Fig. 1.2. Each hexagon in Fig. 1.2 represents a single unit cell [25].

A CNT can thus be described by the notation (n,m), referring to the chiral vector. In Fig.
1.2 two wrapping angles have been defined, & and ¢. The angle 6, known as the chiral angle, is
defined as the angle between the zigzag axis and the chiral vector; the angle ¢, on the other
hand, is defined between the armchair axis and the chiral vector. Using the n, m indices and the
chiral angle carbon nanotubes can be classified in three groups: armchair nanotubes for
n = m, with a chiral angle 8 = 307, zigzag nanotubes for n = 0 or m = (), with & = 0 and chiral
nanotubes for any other combination with 0? < 6 < 30°.

Furthermore, the n, m integers also determine whether a CNT is metallic or
semiconducting, when n — m = 3/ (I being an integer), the nanotube is metallic, and when n — m
# 31, the nanotube is semiconducting with an energy gap depending on its diameter as follows
[13],

E,, = 2Vppnac_c/d, (1.2)
where V), is the carbon-carbon (C-C) tight binding overlap energy, a... is the nearest neighbor

distance between C-C bonds (0.144 nm) and d is the diameter of the carbon nanotube.
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Figure 1.2: Schematic representation of a chiral vector in the crystal lattice of a carbon
nanotube (figure reprinted from [25] with the respective copyright permissions of the authors).



1.5 Electronic Band Structure

In order to examine the electronic structure of carbon nanotubes, it is necessary to define
the structural configuration. Carbon nanotube structures are defined by the indices (n,m)
inscribed in the chiral vector. The chiral vector is a vector along the perimeter of the carbon
nanotube, from which the lattice cell structure can be generated as explained earlier.
1.5.1 Crystal Lattice

The primitive cell of a carbon nanotube can be described from the unit vectors [11,26]:
R =%(\/§x+9) and R, :%(ﬁx—y), (13)

where R; and R, are the unit cell vectors, a is the lattice constant with a value of 3 a.. and ac.
is the nearest distance between two carbon atoms.

Figure 1.3 shows a plot of the crystal lattice structure for a carbon nanotube with a chiral
vector (4,3) generated from the chiral vector and the unit vectors from Egs. (1.2) and (1.3),
respectively.

1.5.2 Reciprocal Lattice

The reciprocal lattice vectors, b; and b, are of the form [11,26]:

2z 1 . . 2r( 1 . .
bl:7($x+yj’ and bl:;(ﬁx_yj. (1.4)

Figure 1.4 shows a plot of the reciprocal lattice structure for a carbon nanotube with a
chiral vector (4,3) generated from the reciprocal vectors of Eq. (1.4).
1.5.3 Energy Dispersion Relation

The energy dispersion relation for carbon nanotubes can be calculated from the electronic

structure of graphene. The energy dispersion of graphene is given by [24,27,28]

1/2

E,p(K)=+V, {3+2Cos(K.R)+2Cos(K.R,)+2Cos[K(R —R))]} ", (1.5)

=" pp7
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Figure 1.3: Schematic representation of the crystal lattice of a carbon nanotube with chiral
vector (4,3).
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Figure 1.4: Schematic representation of the reciprocal lattice of a carbon nanotube with chiral
vector (4,3).
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where V), 1s the nearest neighbor transfer integral and K is the wave vector.
One-dimensional (1D) energy band can be adopted from Eq. (1.5) for single-walled

carbon nanotubes (SWNTs) as follows [26]:

1/2
3K K K
E,(k)y=2%V,. [1+4C0s[\/_2 . aJCos(%aJ+4Cos2[7yaﬂ , (1.6)

where the wave vectors K, and K, are found using the relation,

(k..K,)= (k|?| +qK1J (1.7)

for (—%< k <£, and q :1,...,N],

i

where k is the wave vector along the nanotube axis, |7] is the magnitude of the translational

vector and N is the number of hexagons within a unit cell. |7] and N are given by [11],

2(n* + nm+m?
—\/37; 4, and N= (n e ),
dR dR

7| = (1.8)

where dy is the greatest common divisor of (2n+m) and (2m+n). In addition, K; and K, denote

the allowed reciprocal wave vectors along the tube and circumference axis are given by [11,26]

K - (n+m)b +(@2m+n)b, and K, = mb, —nb,
Nd, N

(1.9)

Equation (1.7) can be utilized to plot the allowed wave vectors in k-space as shown in
Fig. 1.5. Each hexagon constitutes the size of the reciprocal lattice and each line represents an
allowed K vector. Using the allowed K vectors, we can plot the energy band diagram in k-space
from Eq. (1.6) as shown in Fig. 1.6.

1.6 Density of States

The k-vectors in momentum (k) space depend on vectors K; and K, as shown in Fig. 1.5.
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Figure 1.5: Plot of the allowed wave vectors in k-space for a CNT with chiral vector (4,2).
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Figure 1.6: Plot of the energy band diagram in k-space for a CNT with chiral vector (4,2).
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It is possible to represent the area in momentum space for a single state

as, A}l;“‘”e =h’ |K1||K2| / 2, and a differential area as, dAp = h2|Kl| dk , where dk is in the direction

of K, and 7 is Planck’s constant divided by 2z. As a result, the density of states per unit energy

can be defined as follows [29-31]:

dA
D(E)dE - ZA;Slale h |K ”K | | |

2|T|(dEj dE . (1.10)
dk

Equations (1.6) and (1.10) can be used to plot the density of states for any (n,m) carbon
nanotube. Figure 1.7 shows a plot for a CNT (4,3). Each peak in Fig. 1.7 is called a Van Hove
Singularity (VHS) and its respective energy represents a conduction energy-band minimum
value. The total number of Van Hove Singularities is the number of bands a CNT has.

The density of states calculation shown in Fig. 1.7 requires usage of mathematical
solving techniques due to the complexity and relationship of the variables. However, using an
approximate energy dispersion relation calculated in [29,32,33] an equation for the 1D density

of states of carbon nanotubes per unit length can be found as,

AllBands 4 E
Zi: oV a3 [E? — E?

ppr cmin;

D(E)dE = dE, (1.11)

where Ecyi,, 18 the energy conduction minimum for the given band. This minimum energy

value is found using Fig. 1.7. Therefore, the density of states can be recalculated using Eq.
(1.11); the approximate plot of the density of states is shown in Fig. 1.8. It is to be mentioned
here that the density of states in Fig. 1.7 corresponds to a unit cell of a carbon nanotube.
1.7 Carbon Nanotube Field Effect Transistors (CNT-FETS)

Field effect transistors are devices where the current flow depends on the influence of an

applied electric field. Devices such as the MOSFET achieve full conduction under the influence
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of a gate voltage that causes an inverted channel underneath the gate oxide. Current can then
flow between drain and source terminals. The CNT-FET works under the same principle,
however, it achieves this operation by using a SWNT as the conducting channel between
source and drain. The gate voltage varies the conductance of the SWNT and current can
therefore flow between the drain and source. The basic structure of a CNT-FET is shown in
Fig. 1.9 and the corresponding energy band diagram as a function of length (gate to substrate)
is shown in Fig. 1.10.

1.7.1 Background of CNT-FETs

The first CNT-FETs were reported in 1998 by Dekker’s group [34] and Martel et al. [14].
Such devices were fabricated using carbon nanotubes on top of SiO, and a Si-substrate that
worked as a backgate, platinum (Pt) electrodes were used for the drain and the source
terminals. The carbon nanotubes were produced by laser ablation synthesis and dispersed
randomly on the SiO,. This method showed poor characteristics since it was based on an
undefined number of carbon nanotubes being bridged between the electrodes. Consequently,
the use of chemical vapor deposition of methane on patterned substrate allowed the growth of
carbon nanotubes being grown only in specific metallic catalyst islands [35].

Early CNT-FETs were fabricated on oxidized Si-substrates, the gate coupling was very
poor due to the thick SiO, layer and back gate geometry [14,34]. In 2002, major improvement
was observed after the implementation of CNT-FETs using top-gate geometry [8,36].

Transconductance of ~3.25 uS and subthreshold slope of ~130 mV/decade were
observed. The transconductance was much higher in comparison to 0.3 puS of back gate
geometry devices [37]. Further enhancement in performance was obtained by using a high -
dielectric [23] and electrolyte gating [38,39]. Javey et al., [23] reported the integration of top

gated p-type CNT-FETs using the high k-dielectric material ZrO, (k = 25) as the gate oxide,
17
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Figure 1.9: Cross-sectional view of a CNT-FET.
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achieving a transconductance and subthreshold slope of 12 uS and 70 mV/decade, respectively.
Electrolyte gating, first introduced by Kruger et al., [40] involves applying a voltage at the
electrolyte gate, which creates an electrochemical potential between the electrolyte and the
device. The leakage current between the electrolyte and the electrodes is negligible and the
electrolyte behaves as an insulating liquid gate [38]. Subthreshold slopes of 80 mV/decade and
hole mobilities of 1500 cm?/Vsec were reported by Rosenblatt et al., [38]. Later on, hole
mobilities of 2600 cm?/Vsec and subthreshold slopes of 62 mV/decade were also reported [39].

Carbon nanotubes are conductors that fall in the ballistic operation regime [41], a feature
of great interest for integrated circuits because of the long scattering lengths. Ballistic carbon
nanotube have been demonstrated [12,42] and the reason behind the long scattering length is
the low number of scattering events. Since carbon nanotubes are 1D conductors, there is a
reduction of phase space for scattering [43] because only backscattering is possible [44,45],
since only forward and backward propagation is allowed.

When CNT-FETs were first implemented, they showed a strong Schottky barrier at the
electrode-nanotube interface [8,14] and current was mainly attributed to the modulation of the
contact resistance at the electrode-nanotube interface rather than to the channel conductance
[46]. Though characteristics of CNT-FETs resemble that of a typical MOSFET [47], the
Schottky barrier still remains an important issue. Since the current is exponentially dependent,
a small change in the bias voltages can cause dramatic unwanted variations in the current [48].
Nevertheless, recent improvements in fabrication of CNT-FETs have allowed the
implementation of CNT-FETs with small, negative or no Schottky barriers [49-51]. Javey et al.,
[49] have used palladium (Pd) to eliminate the Schottky barrier for holes in the valence band in
p-type CNT-FETs and Nosho et al., [50] have used calcium (Ca) to do the same for electrons in

the conduction band for n-type CNT-FETs.
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1.7.2 Fabrication

Carbon nanotube field effect transistors (CNT-FETs) can be fabricated with cross-
sectional dimensions of the order of the quantum mechanical wavelength of electrons. Thus,
the transport properties are influenced by quantum mechanical considerations and ballistic
transport [52,53]. Since CNTs can be doped with n- or p-type impurities, both n- and p-type
CNT-FETs have been fabricated [10,54]. The structure of a CNT-FET is similar to the structure
of a typical MOSFET [7,55] where a SWNT forms the channel between two electrodes which
work as the source and drain of the transistor. The structure is build on top of an insulating
layer and silicon substrate which works as the back gate [14,36,56]. In the past decade,
significant work on fabrication of CNT-FETs has been reported [8,14,37,55,57-59]. This
includes n- and p-type CNT-FETs [50,51], multistage complementary logic gates
[23,37,54,60,61], CNT-interconnections [62-64] and even SRAM cells [37].

The steps involved in fabricating a CNT-FET are as follows: the carbon nanotubes are
grown using any of the methods described in Section 1.2. AFM" or TEM is used to measure
the diameter of the carbon nanotubes [65]. The catalyst pattern position is used as an alignment
marker for the metal electrodes of the carbon nanotube; these metal electrodes are the source
and drain contacts. Although gold (Au) or titanium (Ti) electrodes have been used, palladium
(Pd) and calcium (Ca) electrodes are preferred [51] as they can remove or decrease the
Schottky barriers at the drain and source contacts. The gate oxide (usually a high k-dielectric
material as silicon nitride) [66] and the gate contacts are deposited. High k-dielectric materials
have been employed [23] to increase the gate capacitance and gate coupling of the device.

It was mentioned above; the fabrication of n- and p-type CNT-FETs has been

" Atomic Force Microscopy.
T Transmission Electron Microscopy.
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successfully achieved. When the first CNT-FETs were fabricated their I-V characteristics
showed p-type behavior [34] implying a p-type doped carbon nanotube. The reason for p-type
behavior was later explained by the absorption of oxygen [60,67,68], which changes the energy
band level diagram at the CNT-electrode interface favoring the conduction of holes [69,70].
Consequently, n-type CNT-FETs were fabricated [55,70], Derycke et al., [70] showed the
fabrication of n-type CNT-FET by annealing in vacuum for several minutes. N- and p-type
CNT-FETs have also been fabricated from conventional doping. N-type devices have been
fabricated [55] using potassium (K) as the donor agent and p-type devices have been fabricated
[71] using boron (B) as the acceptor agent.
1.7.3 Characterization of CNT-FETs

With the advancement in fabrication technology of carbon nanotube field effect
transistors, efforts have been made in modeling the transport behavior, including the models by
Raychowdhury et al., [72], John et al., [73], and Guo et al., [74] and the semi-empirical SPICE
compatible models for design of CNT-FET based logic devices [72,73,75-78]. Models for the
high frequency behavior of CNT-FETs have also been implemented [52,79-81].

However, the current transport phenomenon in CNT-FET is not fully understood though
a few additional models for characterizing the current transport in CNT-FETs have been
reported based on measured device parameters [9,56,57,82]. These models, nevertheless, are
still numerically based and include too many fitting parameters. This increases the complexity
of simulation and limits both the compatibility with SPICE and the applicability in analysis and
design of integrated circuits.
1.8 Scope of Research

In this dissertation, we first derive and analyze the carrier concentration of electrons in

carbon nanotubes. A simplified density of states function for carbon nanotubes has been
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experimentally demonstrated by Mintmire and White [32]. We have used these results in
Chapter 2 to analytically derive the carrier concentration in carbon nanotubes. The intrinsic
carrier concentration and doping effects are investigated for different carbon nanotubes. Results
for varying diameters and wrapping angles are also presented.

In Chapter 3, we utilize basic physical properties of field effect transistors [83,84] and
our work on carrier concentration of carbon nanotubes [85] to present analytical modeling
equations describing the current transport in CNT-FETs. I-V characteristics for normal and
subthreshold operation are demonstrated and their dependence on the chiral vectors and device
geometries are investigated.

In deriving the I-V characteristics of CNT-FETs, analytical model equations for threshold
voltage (V) and saturation voltage (Vs s.) are each derived in the process. In Chapter 4, these
derivations are investigated in much greater detail and the respective correlation to the chiral
vectors and device geometry of CNT-FETs is demonstrated.

In the remaining chapters, we focus on the applications of our derived modeled
equations. In Chapter 5, the results obtained from the I-V characteristics are used to generate
voltage transfer characteristics of basic logic devices based on complementary CNT-FETs. In
Chapter 6, we use our small signal equivalent circuit model [86,87] and current transport model
equations [86-88] for CNT-FETs to study and analyze the frequency response of CNT-FETs
and CNT-based logic devices and to establish a dependence on the chiral vectors and device
geometry making predictions for very high frequency behavior in integrated circuit
applications.

In Chapter 7, the bio-sensing applications of SWNTs and CNT-FETs at molecular levels
are reviewed involving applications in detecting traces of chemical vapors and gases such as

nerve agents and explosive components [89-93]. Our presented current transport model
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equations are utilized to provide a better understanding to reactions taking place in CNT and
CNT-FET sensors when exposed to traces of bio- and chemical sensing agents for the detection
of traces of agents at molecular levels.

Conclusion and future scope for further advancement of research conducted are
summarized in Chapter 8. Appendix A provides a solution of the integral used in Chapter 2.
Appendix B shows a detailed derivation of the analytical expressions for the carbon nanotube
surface potential. Appendix C provides a complete list of the model parameters. Appendix D
shows a copyright permission for Fig. 1.2. Appendix E summarizes a list of
published/communicated research work.
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CHAPTER 2
CARRIER DENSITY AND EFFECTIVE MASS CALCULATIONS

IN
CARBON NANOTUBES®

2.1 Introduction

Since the discovery of carbon nanotubes in 1991 [1], significant amount of research has
been conducted to study its electronic properties [2-5]. Carbon nanotubes are being predicted to
be the future material to substitute silicon used in CMOS technology at the end of Moore’s law
[6-8]. As it was explained in Chapter 1 carbon nanotubes are one-dimensional (1D) graphene
sheets rolled into a tubular form [9]. Their electronic properties depend on its diameter and
wrapping angle [2], which are represented by the indices (n,m) defined in the chiral vector
characterizing each carbon nanotube. The electronic structure and electrical properties have
been theoretically studied [3,10] based on the band theory of graphite [11,12] and have also
been established experimentally [2]. The density of states has also been calculated [13,14] and
is directly related to the chiral vector of the carbon nanotube [15].

Though applications of carbon nanotubes have increased over the past decade, very little
work has been performed on modeling the carrier concentration. Recently, Raychowdhury et
al., [16] have presented equations for the carrier concentration in carbon nanotubes in an
attempt to calculate the inside charge. However, their model uses numerical curve fitting
techniques. In this chapter, we have used the density of states function of Mintmire and White

[14] to derive analytical equations, which predict the carrier concentration in carbon nanotubes.

" Part of the work is reported in the following publication:

1. J. M. Marulanda and A. Srivastava, “Carrier density and effective mass calculations for carbon nanotubes,”
Proc. International Conference on Integrated Circuit Design and Technology, pp. 234-237 (Austin, Texas,
May 30™ — June 1%, 2007).

2. J. M. Marulanda, A. Srivastava, “Carrier density and effective mass calculations in carbon nanotubes,”
physica status solidi (a), 2008 (in press).
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2.1.1 Energy Dispersion Relation
The energy dispersion relation in carbon nanotubes is calculated from the electronic
structure of graphene [17,18]. The one-dimensional energy dispersion relation for single walled

carbon nanotubes (SWNTSs) is given by [19-21],

1/2
K K
Ep(k)= inp,,{l + 4Cos[\/§2K" ajCo:(zy aj + 4C0S2[2y aﬂ ) (2.1)

where V,,, is the nearest neighbor overlap integral between carbon - carbon (C-C) atoms used

in tight binding calculations of the carbon nanotube. In the present research, we have used
Viopr = 2.5 eV [17]. K, and K, are the wave vectors of carbon nanotubes [17,18].
2.1.2 Density of States

Numerical techniques are needed to compute the density of states from Eq. (2.1) due to
its complexity. However, an approximate density of states calculation has already been found
for carbon nanotubes [14,22] and is described as follows,

AllBands
D(E)AE=2 4 E

i 7Z-I/I7P”a\/g \/Ez - Eczmin,

dE (2.2)

where Ecys, 1 the minimum energy value for the given conduction band. E¢cpiy, 1s found by
determining the energy minimum value for the respective conduction band using Eq. (2.1). The
first conduction band, Ec,;, can also be obtained from the following approximated equation
[17]:

E V
g =L @ (23)

Cmin 2 d\/g >

where d is the diameter of the carbon nanotube and £, is the energy band gap.
2.2 Effective Mass

Given the complete description of the energy dispersion for carbon nanotubes, Eq. (2.1)
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can also be used to calculate the electron effective mass for each band. We can use the effective
mass relationship in a semiconductor [23] for calculating the effective electron mass in a CNT

(n,m) as follows:

. R

m. =———-=.
’ d’E
dk?

Table 2.1 summarizes the electron effective mass for various carbon nanotubes (n,m) calculated

(2.4)

from Eqgs. (2.4) and (2.1).
2.3 Carrier Concentration

The carrier concentration in a semiconductor is given by [23-25],
j D(E)f(E)dE . (2.5)
E,

where D(E) is the density of states, f(E) is the Fermi level and E. is the conduction band
minimum value. Substituting Eq. (2.2) for the density of states in Eq. (2.5), we obtain the

equation for carrier concentration given by,

ppr

AllBands E-Ep B (2 6)
n,, = 2 E\E Ko dE . .
“ ,- 4 a\/g j

Equation (2.6) can be further simplified and expressed in the following form:

E-Ep+E, \7!
n, E'+EE?+2EE)"|1+e ¥ | dE'. 2.7
cn 7Z'V a\/_J. ( c ) ( )

In deriving Eq. (2.7), the limits of integration in Eq. (2.6) have been changed by replacing the
variable £ with (E. + E'). Furthermore, the summation has also been dropped as the Fermi
function becomes negligible for conduction energy band minimums beyond the first band.

The integral in Eq. (2.7) is still very difficult to solve analytically, nevertheless, by
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Table 2.1. Effective mass of electrons in carbon nanotubes

(n,m) Effective mass of electrons (m*)
(3.,1) 0.507 my'
(3,2) 0.222 my
(4,2) 0.271 my
(4,3) 0.175 my
(5,0) 0.408 my
(5,1) 0.159 my
(5,3) 0.189 my
(6,1) 0.255 my
(7,3) 0.116 my
(9,2) 0.099 m,
(11,3) 0.108 my

“my is the mass of the electron (9.109 x 10™! Kg).
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putting x == and 7=

Ny

172 o Y1
ncm:W!(ka+E(,)[x(ka+2Ec)] (1+e ) dx . (2.8)

(kTx+ E.)

In addition, by defining G(x)= and F(x)= , Eq. (2.8) can be
Y 8 Gl) X2 (kTx +2E,)" () [romn b0 (28
rewritten as,
G(x)
= dx, 2.9
Lnt '([ \/_J‘l+ex n X ( )
where
8kT
N =—2 2.10
c ﬂVPMa\/E ( )

The integral in Eq. (2.9) is similar to the Fermi integral in [24] and can be approximately
integrated under two limits described as follows [23,24].

2.3.1 Limit 1: n<<-1

Under this limit, it can be shown that the function G(x) retains a constant value of VAT

6E,
kT

since for values beyond this limit, kT , the exponential function F(x) approaches zero and the

integral becomes negligible. Under these conditions it is possible to write,

Ep-E,

n,=Nle | 2.11)

where

(kTx+E,)

B JkT '([ x"2(kTx+2E, )"

e “dx. (2.12)

In Eq. (2.12), the integral, 7, has no definite solution. However, an approximate solution
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has been found by representing the exponential function, e™, with a series of polynomial
functions using the Taylor series expansion approximation [26,27] around a variable 4.

We first represent the exponential function as:

et xe 1—(x—A)+(x_A)2 _(X_A)T (2.13)

Equation (2.13) is a very good approximation within the range of 4 to 4+/. Replacing the

exponential term in the integral of Eq. (2.12) we obtain:

g 4+ Y Rt
.[ 12 ka+ = ) GHLE (x - A)"' (X A) - (x A) dx, (2.14)
VT = (kTx+2E,) 2 6
where A4, 1s the maximum possible integer value of . This integral can now be solved

analytically. The procedure involved in solving the integral of Eq. (2.14) is a long and
complicated process; however, the solution is only a polynomial expression, which can be

expressed as follows:

w3 e 0 s e - @19)
B b A 44 e e~ ad]

2
+%(f—;)2[l+A+f—;+%A2 Ee_s( —)z]ln[ +J_x+M]}x "

It should be noted that this integral is independent of the Fermi energy and characteristic of the

chiral vector (n,m) of any particular carbon nanotube. Thus, it will remain constant at any bias

voltage but dependent only on temperature. See Appendix A for the analytical solution of the

integral, /.

2.3.2 Limit 2: 7>>1

Under this limit, the exponential function F(x) of Eq. (2.9) can be approximated as
38



F(x) = 1, which will remain true as long as x < 77. This approximation fails for x >, which is
the case of Eq. (2.9) since the upper limit of integration is infinite. However, for x > 7, the
exponential term in F(x), e* ", becomes very large causing F(x) to approach zero. Therefore,
F(x) can be considered negligible for x > 77 . This latter approximation allows us to change the
upper limit of integration since F(x) vanishes for x > 7. Thus, the upper limit of Eq. (2.9) can
be replaced with x =17.

Under these conditions Eq. (2.9) becomes
E2 _ E2 1/2
n, =N. M (2.16)
kT

For intrinsic level calculations and normal doping, Limit 1 is useful (Eq. 2.11); Limit 2
(Eq. 2.16) becomes important for heavy doping. By setting Er = E;, where E; is the intrinsic
energy level and lies in the middle of the band gap, we can obtain the intrinsic carrier

concentration, n.,,; and is given by

-E,

Moy =N Ie (2.17)

Table 2.2 shows the intrinsic carrier concentration for different carbon nanotubes (n,m)
obtained from Eq. (2.17) at room temperature (300 K). An effective carbon nanotube wall
thickness of 0.617 A [28] has been used in the calculations of Table 2.2. The 4™ column in
Table 2.2 summarizes intrinsic carrier concentration in carbon nanotube per unit volume for
specific chiral vector (n,m), energy band gap (£,) and diameter (). Since single-walled carbon
nanotubes can be considered true quasi-one-dimensional conductors, 5™ column in Table 2.2
summarizes intrinsic carrier concentration in carbon nanotubes per unit length. It is noticed
from Table 2.2 that a carbon nanotube as a quasi-one dimensional behaves as an insulator for

certain combinations of chiral vectors, energy band gap and diameter. For other combinations,
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Table 2.2. Energy band gap, diameter and intrinsic carrier concentration in carbon nanotubes

(n,m) d (nm) Eq (eV) Nent,i (em™) Nent,i (em™)
(3,2) 0.344 2.089 7.042 x 10 0
(4,2) 0.417 1.721 6.303 x 10° 0
4,3) 0.480 1.497 1.239 x 10° 0
(5,0) 0.394 1.821 2401 x 10° 0
(5,1) 0.439 1.635 2.677 x 10° 0
(5,3) 0.552 1.301 1.791 x 10" 0
(6,1) 0.517 1.389 1.656 x 10’ 0
(7,3) 0.701 1.024 5.238x 10" 0
9,2) 0.800 0.897 4911x 10" 0
9,8) 1.161 0.618 7.748 x 10" 1.70 x 10'
(10,8) 1.232 0.583 1.404 x 10'° 3.40x 10
(10,9) 1.298 0.553 2.314x 10" 5.80 x 10
(11,3) 1.007 0.713 6.034 x 10" 3.00 x 10"
(11,6) 1.177 0.610 8.929x 10" 2.00 x 10
(11,10) 1.434 0.500 5.530 x 10'° 1530 x 10"
(12,8) 1.375 0.522 3.864 x 10'° 10.30 x 10'
(14,13) 1.844 0.389 3.289 x 10" 11.76 x 10°
(20,19) 2.663 0.270 1.958 x 10" 10.11 x 10°
(21,19) 2.732 0.263 2.153x 10" 11.40 x 10°
(40,38) 5.326 0.135 9.924 x 10" 10.25 x 10*
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the carbon nanotube behaves as a conductor.

Equations (2.11) and (2.16) can also be used to study the effect of temperature on the
intrinsic carrier concentration of carbon nanotubes. Figure 2.1 shows the dependence of
intrinsic carrier concentration in carbon nanotubes obtained from Eq. (2.17) on temperature for
three different chiral vectors. In Fig. 2.1, we can clearly see the strong exponential dependence
of the intrinsic carrier concentration on temperature for an intrinsic carbon nanotube with chiral
vectors (4,2), (4,3) and (7,3).

The carrier concentration in a doped carbon nanotube can be obtained by adding an
impurity concentration in Eq. (2.17) and is given by

n

et = Mgy ¥V, (2.18)
where N is the ionized impurity concentration in a carbon nanotube.

Figure 2.2, which is obtained from Eq. (2.18), shows the effect of temperature for a
doped carbon nanotube with a chiral vector (4,3) with 10" donors. In Fig. 2.2, it is assumed
that below 100 K, there is low ionization and therefore low carrier concentration is observed (a
value of 100 K for the ionization temperature of CNTs has been assumed from that of silicon).
As the temperature is increased more and more electrons are available in the conduction band
and at about 100 K (/000/T = 10) [23] all donor atoms are ionized and the carrier concentration
equals that of the donor atoms. This temperature range ~100 K to 500 K is the ionization region
for carbon nanotubes. Beyond ~500 K, the intrinsic carrier concentration dominates as
predicted by the exponential dependence shown in Fig. 2.1. The behavior is similar to carrier
concentration dependence on temperature in silicon [23]. The effect of donor atoms on the

Fermi energy level of carbon nanotubes has been studied using Eqgs. (2.11) and (2.16). In Fig.

2.3, we can see the variation of the energy separation (E.— Er) under normal and heavy dopings
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Figure 2.1: Plot of the intrinsic carrier concentration dependence on temperature for a carbon
nanotube with chiral vectors (4,2), (4,3) and (7,3).
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Figure 2.2: Plot of the carrier concentration dependence on temperature for a carbon nanotube
with a chiral vector (4,3) and a doping concentration of 10" donor atoms. Note: For high
temperatures the intrinsic concentration dominates and for low temperatures (below 100 K), the
concentration decreases due to the incapability of the donor atoms to become ionized.
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Figure 2.3: Plot of the energy separation (Er — E¢) versus doping concentration for two carbon
nanotubes with chiral vectors (4,2) and (10,0).
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for two carbon nanotubes with chiral vectors (4,2) and (10,0). In Fig. 2.3, we can also notice
the exponential dependence of the Fermi energy level on the doping concentration. This is
confirmed by the linear dependence observed in the plot of the energy separation (Er — E¢)
versus [n(doping concentration) for carbon nanotubes.
2.4 Summary

The effective mass and carrier concentration in carbon nanotubes have been theoretically
studied. A concise derivation of the carrier density under two limiting cases has been presented
including analytical solutions for calculating the intrinsic carrier concentrations and effective
mass in carbon nanotubes. Temperature dependences of the carrier concentration and energy
band structure have been established analytically. The calculations obtained provide useful
understanding of the conductivity in carbon nanotubes and electrical modeling. They represent
an important contribution to this field of research; especially, when dealing with impurities,
doping concentrations and its effects on the electronic band structure of hexagonal crystal
lattice materials. In addition, looking ahead into the application of CNT-FETs, the analytical
equations presented can also be used in calculating and deriving current transport models for
these transistors. The analysis can be extended to the bundles of carbon nanotubes comparing
to a bulk material for interconnect applications.
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CHAPTER 3

CURRENT TRANSPORT IN CARBON NANOTUBE FIELD EFFECT TRANSISTORS
(CNT-FETs)"

3.1 Introduction

Emerging carbon nanotube field effect transistors for very large scale integration and
interconnects [1-6] have been a subject of intensive research for a wide range of applications.
These CNT-FETs have been identified as one of the promising candidates substituting
shrinking CMOS technology at the end of the Moore’s law [7-9]. In this chapter, we use our
carrier concentration model derived in Chapter 2 to investigate and derive a current transport
model for CNT-FETs.

The structure of a CNT-FET is similar to the structure of a typical MOSFET [7,10],
where a SWNT forms the channel between two electrodes which work as the source and drain
of the transistor. The structure is built on top of an insulating layer and a substrate which works
as the back gate [2,11]. Both n- and p-type CNT-FETs have been fabricated in the past decade
[12,13] and multistage complementary logic gates have been demonstrated [14-18].

With the advancement in fabrication technology of carbon nanotube field effect
transistors, efforts have also been made in modeling of the current transport behavior and

models have been developed for the design of CNT-FET based logic circuits [19-24]. However,

" Part of the work is reported in the following publications:

1. J. M. Marulanda and A. Srivastava, “I-V characteristics modeling and parameter extraction for CNT-FETs,”
Proc. 2005 International Semiconductor Device Research Symposium, (Bethesda, MD, December 7-9, 2005).

2. J. M. Marulanda, A. Srivastava and A.K. Sharma, “Current transport modeling in carbon nanotube field effect
transistors (CNT-FETs) and bio-sensing applications,” Proc. SPIE Smart Structures and Materials &
Nondestructive Evaluation and Health Monitoring: Nanosensors and Microsensors for Bio-System, vol. 6931,
pp- 693108-1-693108-12, (San Diego, CA, March 9-13, 2008).

3. J. M. Marulanda, A. Srivastava and S. Yellampalli, “Numerical modeling of the I-V characteristics of the
carbon nanotube field effect transistors,” Proc. IEEE 40™ Southeastern Symposium on System Theory (SSST
2008), pp. 235-238 (New Orleans, LA, March 16-18, 2008).
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transport modeling is limited to numerical and curve fitting techniques. In this chapter, we have
attempted to develop analytical models characterizing the current transport in CNT-FETs for
the analysis and design of integrated circuits. We have used these current-voltage model
equations to generate [-V characteristics, under normal and subthreshold operation for CNT-
FETs using different chiral vectors (n,m) for the carbon nanotube.
3.2 Current Transport Modeling

The current transport equation of a CNT-FET can be obtained by relating the carbon
nanotube potential to the terminal voltages. The charge inside the carbon nanotube is described
from the electronic structure of the carbon nanotube. A model for the carbon nanotube potential
is then derived and the current transport equation is obtained.
3.2.1 Charge Sheet Model

Figure 3.1(a) shows the basic cross section of a CNT-FET including the charge
distributions. Figure 3.1(b) shows the corresponding potential distributions between the gate
and the substrate. In Fig. 3.1(a), charge distributions are explained as follows: the charge on the
gate is O, the charges in the oxide layers are Qy; and Q», the charge inside the CNT is Q. and
the charge in the substrate is Oy, In Fig. 3.1(b), six different potential distributions are shown,
which are also described as follows: the voltage between the gate and the substrate (back gate)
is Vg, the potential drop across the oxides are w,; and ., the surface potential in the
substrate with respect to the back gate, w5, the potential across the CNT, ., and the work
function difference between the gate and the substrate materials is ¢)y;s.

Using Kirchoff’s voltage law, the potential balance and charge neutrality condition, we

can write for the Fig. 3.1,

I/gb = ¢ms + v/oxl + l//cnt + l//ox2 + l//subs H (3 1)
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Figure 3.1: (a) Plot of the charges from gate to substrate and (b) plot of the potential
distribution from gate to substrate in a CNT-FET.
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ng + Q(;l + Qént + Q(')Z + Q;ubs = O H (32)
The prime in Eq. (3.2) denotes the charge per unit area. In (3.1), ¢, 1s divided in two parts and

expressed as follows,

Brs = Pue T s> (3.3)

where ¢, and ¢, are the work function differences between the metal gate and carbon
nanotube materials and the carbon nanotube and substrate materials, respectively.

Combining potentials Wen, Wox2 , @es and wyps into a single potential, w5, Eq. (3.1) can
then be re-written as follows,
Ve = Pe T Vort + Ve (34
where ., describes the surface potential at the interface of the gate oxide and the carbon
nanotube with respect to the back gate.

The electric field in terms of the charge distribution can be written from the Maxwell’s
third equation [25] and is given by,
V.(eE)= p,, (3.5)
where ¢ is the permittivity of the material, £ is the electric field, and p, is the charge per unit
volume. Assuming that the electric field in Fig. 3.1(a) is constant through the gate oxide region
and at the bottom edge of the carbon nanotube, Eq. (3.5) can be integrated between the gate and
the bottom edge of the carbon nanotube, that is in Fig. 3.1(a) from y=0 to y=T7 ,+d_,,
where d,,; 1s the diameter of the carbon nanotube. In this derivation we have assumed that the
carbon nanotube has a relative permittivity, &.,,. We can write Eq. (3.6) as follows,
EnE ont = Eon1E ot = Ot + Qs » (3.6)
where E.,, and E,,; are the electric fields along the y-axis across the carbon nanotube and gate

oxide, respectively.
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In a typical top gated CNT-FET, the substrate oxide thickness, 7,,, is much greater than
the gate oxide thickness, 7,,; [11]. We can then assume that any charge applied at the gate is

compensated only by an induced charge in the carbon nanotube as follows:

AQ, =-AQ,,, . (3.7)
Furthermore, there is a specific gate voltage, called the flat band voltage, Vp, [26], which when
applied at the gate with respect to the back gate; it compensates for the band bending at the gate

oxide and carbon interface. Under this flat band condition, the electric field at the bottom edge

of the carbon nanotube, E.,; in Eq. (3.6) can be neglected. Under this assumption and replacing

E,.; with the potential gradient _dl//;—ﬂ(y) in Eq. (3.6) we obtain,
y

d
Soxl l//;;;}(y) = Q(,)l + Qént . (38)

By integrating Eq. (3.8) through the gate oxide region, that is in Fig. 3.1(a) from y =0 to

y =T, ,, we can write an expression for the gate oxide potential as:
O + 0.,
l/loxl = _% : (39)

oxl

In Eq. (3.9), C!, is the gate oxide capacitance per unit area. Substituting Eq. (3.9) in Eq. (3.4)

we obtain an expression for the gate voltage given by,

Lo
C

oxl1

_ 9
e — o (3.10)

ox1

ng = V/cnt,s -

In Eq. (3.10), Ocu, Qs and C,,; are the total charges and capacitance, respectively, which are

i
cnt ?

obtained by multiplying Q;,, O.,, and Q;, with their respective areas. C,;, the capacitance

between the gate and the carbon nanotube, can be redefined by considering the carbon

nanotube to be a line of charge and the gate to be a planar conducting plate. Therefore, the gate
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oxide capacitance of thickness 7,,; of a carbon nanotube of length L and radius r is given by
[27,28],

278y L . (3.11)

Coxl =
1'{7:»51 +r+ szcl + 27:)x1rJ
r

In Eq. (3.10), the flat band voltage, Vp, is:

Vie = e = g‘” : (3.12)

oxl

The gate voltage, V,, in Eq. (3.10) after combining with the Eq. (3.12) can be expressed as

follows,

_ QCI‘IZ + V

o (3.13)

gb = l//cnt,s

ox1
In Eq. (3.13), w.us can be explained as a control potential in the carbon nanotube in charge of

shifting the energy band at the interface of the gate oxide and carbon nanotube. As the gate

voltage increases, we start seeing a voltage drop across the gate oxide modeled as &*-.

Equation (3.13) can be used to define the threshold voltage.
3.2.2 Charge Inside the Carbon Nanotube

In Eq. (3.13), the charge inside the carbon nanotube can be calculated using the following
relation |Q.n|= gnend., where ng,, s the carrier concentration per unit length inside the carbon

nanotube, which we have derived in our earlier work [29] and is given by

( J‘ ka+E
o 7[\/_V a \/kax+2E

ppr

+er ) dx, (3.14)

where a is the lattice constant, V,,, is the energy transfer integral [30,31], £ is Boltzmann’s

constant and 7 is the temperature. The parameter, # is given by:
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<, (3.15)

where E. is the conduction band minima. It is found from the energy dispersion relation of the

carbon nanotubes and is expressed as [30,31]:

1/2
K K
Ep(k)=%V,, {1 + 4Cos(@ a}Cos[Ty aJ +4Cos’ [Ty aﬂ , (3.16)

where K, and K, are the wave vectors of a one-dimensional (1D) carbon nanotube.

There is no reported work on finding an analytical solution of Eq. (3.14). We have
reported an approximate solution under two limiting cases [29]. Under these limiting
conditions, we can express the charge inside the carbon nanotube as follows:

Limit 1, n << —I:

Ep-E.

_gIN.Ie 7 (3.17)

chlt

Limit 2, >> I:

\EXL-E?
=qLN,~———=, (3.18)

ant kT

where

[=_] j (KIx+E) oy (3.19)
VKT o x"?(kTx+2E,)" '

and

N, ST (3.20)

T a,a

ppr
An approximate solution for the integral / of Eq. (3.19) is given in Appendix A.
3.2.3 Carbon Nanotube Surface Potential

In order to effectively describe the potential inside the carbon nanotube, we need to
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determine the energy separation between the Fermi level and the conduction band at the
interface of the gate oxide and carbon nanotube. Assuming a flat band energy in the carbon
nanotube, we can say that the Fermi level and the conduction band at the interface of the gate
oxide and carbon nanotube will be shifted by an amount determined by ¢V, and qyeus,
respectively; where V7, is the induced potential between the carbon nanotube and the substrate
due to the drain and source terminal voltages. The potential, V., varies from ¥V, (source to back
gate potential) to V (drain to back gate potential). Figure 3.2 shows the energy band diagram
of a two terminal CNT-FET when (a) Vy = [Vp| and (b) Vg > 0. In Fig. 3.2(a), we have used
hafnium dioxide (HfO,) as the gate oxide, which is a high k-dielectric insulator material.
Furthermore, ¢ in Fig. 3.2(a) is the carbon nanotube surface potential, gyc.,s when Vg, = Vp,
and w.,, = 0. ¢y is then given by,

Do = Vs + Vs T Pes- (3.21)

As it was previously done, by integrating Eq. (3.5) from y=T

oxl

+d,, to

y=T where d,; 1s the thickness of Oy in the substrate as shown in Fig.

oxl

+d, +1, ,+d

ox2 subs

3.1(a), we can write,
gsEs - 80x2E0x2 = Q(I)Z + Q;ubs’ (322)

where ¢, is the permittivity of the substrate material. Assuming the electric field, E; is

negligible deep inside the substrate and replacing E,., with the potential gradient —M in

dy
Eq. (3.22) we have,
AV, (V) _ oy
ox2 d—Z() = QOZ + qubs' (323)
'y

By integrating Eq. (3.23) from y=T1 ,+d, to y=T,,+d,, + T, , in Fig. 3.1(a) we can

obtain an expression for the second oxide potential as:
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Figure 3.2: Energy band diagram of a two terminal CNT-FET for (a) Vg = Vjp and
(b) Vg» > 0. Note: HfO is the high k-dielectric hafnium oxide.
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Won :_% (324)

ox2
The total capacitance C,., which is the capacitance between the carbon nanotube and the
substrate and is defined as follows,

2ze L

C = ox2 . (3.25)
l“[T;x2+r+ V];12+2T:)x2rJ
r

Assuming Qq,ss and s to be small compared to Oy, and ¢h.s + Wox2, We can rewrite Eq.

(3.21) for ¢y as follows:
G =@~ g‘” : (3.26)

ox2

We are interested in the separation between the Fermi level and conduction band on at
the interface of the gate oxide and carbon nanotube. Following the Fig. 3.2(a) we can observe
that the conduction band of the carbon nanotube is shifted by an amount of y...s — ¢y
expressed as [19,26],

ECsurf = Ec - q(lr//cnt,s _¢0 ) . (327)

where Ecg,s 1s the conduction band energy at the interface of the gate oxide and carbon
nanotube. The Fermi level at the interface, Ery,1s shifted by an amount of V., and is expressed
as [19,26],

Epy =Ep—qV,. (3.28)
From Egs. (3.27) and (3.28) we can write:

EFsurf - ECsurf = EF + q(‘//cm‘,s _I/cb - ¢0 )_ Ec . (329)

The shift in the Fermi level of the carbon nanotube due to impurity doping can be

obtained as follows. In Chapter 2, we studied the carrier concentration in carbon nanotubes, the
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carrier concentration in a carbon nanotube is given by

Ep-E,

n, =Nle 7 . (3.30)

The intrinsic carrier concentration can be obtained by setting the Fermi level in the middle of

the band gap, that is £+ = 0 in Eq. (3.30) to obtain,

-E,

=N Ie* . (3.31)

ncnt,i

Using Eq. (3.31) we can rewrite Eq. (3.30) as follows:

E, =kT 1{”—} (3.32)

n

cnt,i
The carrier concentration in a doped carbon nanotube can also be obtained by adding an
ionized impurity doping concentration, N in Eq. (3.31) as follows:

=n_ +N. (3.33)

ncnt cnt,i
The ionized impurity concentration, N in Eq. (3.33) can be either donor atoms, Np or acceptor
atoms, Ny.

In an intrinsic carbon nanotube, the Fermi level lies in the middle of the band gap; we can

use Eq. (3.32) to express the shift in the Fermi level depending upon the doping. Furthermore,

using Eq. (3.33) we can define a parameter AEr given by,

AE, :ileﬂ[l-‘rL], (3.34)

n

cnt i
where AEfp is positive for an n-type carbon nanotube (donors impurity concentration,
N = Np) and negative for a p-type carbon nanotubes (acceptors impurity concentration,

N = Ny). Thus, using Eq. (3.34) for the shift in the Fermi level, we can rewrite Eq. (3.29) as:

EFsurf _ECsurf = AE‘F + q(y/cnt,s _I/cb _¢0)_Ec . (335)
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Using Eq. (3.35) in the analytical expressions for the charge inside the carbon nanotube given

by Egs. (3.17) and (3.18), the gate substrate voltage, Vs, in Eq. (3.10) can be rewritten as:
ng = l//cnt,s + 5f(l//cnt,s > Vcb )+ I/ﬁ) 2 (336)

where

AEF*‘I('//W,: Ve *¢0)*Ec

( ) Ie kr ; for cht,s S Vcb +¢0 _AfTF-i_%_kTT
f l//cnts’l/cb = 2 ’ (3.37)
\/( FYQY s =9V q¢0) ;fOI" Vo > cb+¢0_ AjF +%+%
kT
and
5= 9N (3.38)
C

ox1

Equation (3.36) cannot be solved explicitly in terms of the terminal voltages and
numerical techniques are to be used to find the exact carbon nanotube potential given a gate
input voltage. Figure 3.3 shows the carbon nanotube potential versus the gate substrate voltage
for varying V.

Nevertheless, by partitioning Eq. (3.36) in three effective regions, an explicit solution in
terms of the terminal voltages can be obtained: Region 1, in which the carbon nanotube surface
potential has a linear and exponential dependence on the gate to substrate voltage, Region 3, in
which the carbon nanotube potential does not change significantly with the gate to substrate
voltage, and Region 2, in which no real dependence of the carbon nanotube potential on the
gate to substrate voltage can be established and an approximate curve fitting can be obtained.
The carbon nanotube potential can be found using the following equations:

i A E g de.
Region 1, for 0<V,, <V, +V, +¢, — e

(//cm,s = ng - V/b ’ (339)
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Figure 3.3: Carbon nanotube surface potential, y..., versus gate substrate voltage for Vy = 0
and g9 = 0 for a CNT-FET (5,3) using a numerical approach. The device dimensions are:
Tox: =40 nm, Tpo = 400 nm and L = 50 nm.
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i AE; | E, _gr e’
Regions 2 and 3, for ng >V, +Vfb + ¢, _TF"'T_T_ =

Vg,,—51e“—V_,,,+5m(Vcb+¢o—AfF+%—k7T) (3.40)
1+om ’

l//cnt,s =

where m is the slope of Region 2 and is of the form:

2E, -1
N+l =1e
S LS. (3.41)

- 24T
q

The slope ‘m’ should not be confused with the index m of the chiral vector (n,m). A complete
derivation for Egs. (3.39) and (3.40) is given in Appendix B. Figures 3.4 (a) and (b) show a plot
of Wens versus Vg, for two chiral vectors (11,3) and (7,2), respectively. The solid lines in Fig.
3.4 correspond to the analytical solution and circle markers show the numerical solution. It is
clearly noticed that the analytical solution agrees closely to the numerical solution.

In Fig. 3.4, the curve fitting has been used for the Region 2 given by Eq. (3.40). The
Region 2, defined by the gap predicted by the limits of Eqgs. (3.17) and (3.18) is further
extended to cover the Region 3. This is a very good approximation, but starts failing for gate
voltages above 3 V. However, transistors will hardly operate beyond this voltage given the low
power restrictions of the current technology [32-34].

3.2.4 The Current Equation
In CNT-FETs, both diffusion and drift carrier transport mechanisms contribute to the

current, which is given by [26,35],

| R| Ve (L) wr %)
Ly =Ly (X) + L (x) = EYa Iﬂ(— 0L, )dy ., +— IﬂdQ:’nt : (3.42)
Vent (0) o (O)

|R| in Eq. (3.42) is the circumference of the nanotube and u is the carrier mobility in a carbon

nanotube. In Eq. (3.42) we have used the charge per unit area, but only to show that we have
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3. CNT-FET (11,3)
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Figure 3.4: Carbon nanotube surface potential, .., versus gate substrate voltage for Vy = 0
and ¢y = for (a) CNT-FET (11,3) and (b) CNT-FET (7,2). The device dimensions are:
Tox: =40 nm, Tpo = 400 nm and L = 50 nm.
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R

considered a surface area, —~ for the carbon nanotube. The mobility can be replaced by
L= Uyyupiire> 38 €ach CNT (n,m) will have different values for the mobility, y is a conversion
factor for CNTs from graphite with a value varying from 0 to 1. In addition, y can also be used

to represent how much surface area of the CNT is responsible for the charge flow. The charge,

QOcn: can be obtained from Eq. (3.13) as follows:

Qi = Cos Vi 4 Wy +V 1) (3.43)
Equation (3.43) can be expressed in terms of the charge per unit area by diving it by ‘R‘L to
obtain Q! . By substituting Eq. (3.43) in Eq. (3.42) the following expression for the current is
obtained:

L= Bl W e )V} =S W 00V, 1] (3.44)
where

P WOV =Vt~ 442y (9402, 6.4
and

p=y ﬂ—“‘l (3.46)

In Eq. (3.44), wens(L) 1s the carbon nanotube surface potential at the drain end, which can be
found from Egs. (3.39) and (3.40) by setting V., = Vi + V. The carbon nanotube surface
potential at the source end, w..,(0) is obtained from Eq. (3.40) by setting V., = V. In order for

this assumption to be valid, the gate to substrate voltage must satisfy the condition:
Ve 2V +V 4 + 0y — o B kT Ie . The right hand side of this inequality equation can

be recognized as the threshold voltage.
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In addition, depending on which equation is to be used, either Eq. (3.39) or (3.40), to find
the carbon nanotube surface potential ., (L), two regions of operation can be defined: a

. . -1 . .
saturation region for V, 2V, — (V_/b + @, —%—F%—’%—%), and a linear region for

V,<V —(V_fb + @, U i ) The right hand side of this inequality equation is

gs q q g m

similar to a saturation voltage in a typical MOSFET and under parenthesis is the threshold
voltage, Vy, term. The saturation voltage, Vs . and the threshold voltage, V7, derivations will be
addressed in more detailed in Chapter 4.

Figure 3.5 shows the I-V characteristics for two carbon nanotubes with chiral vectors
(3,1) and (7,2) for different overdrive gate voltages. In Fig. 3.5(a), experimentally measured
data taken from the work of Wind et al., [9] for chiral vector (3,1) are also plotted for
comparison. The model equation follows closely the experimentally measured data for Vs up to
1 V. Beyond V, = 1 V, experimental values deviate from the model equation since our model
equation does not include a correction term similar to the channel length modulation parameter
in a MOSFET. No experimental data could be made available for CNT-FET (7,2) for
comparison with the model equation.
3.3 Subthreshold Current

In subthreshold region, the carbon nanotube surface potential is found in the same way as
in normal operation, using Egs. (3.39) and (3.40). However, we can use a different current
equation for low bias conditions. The current equation per conduction band of a carbon

nanotube is defined as follows [36,37]:
Emax
Ly, =23 [TEE) - [(E)E, (3.47)
i E,

where f,(E) and f;(E) are the Fermi levels at the source and drain, respectively. The total 7, will
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Figure 3.5: I-V characteristics of CNT-FETs with Qy; = Qp, = 0 for (a) CNT-FET (3,1) and (b)
CNT-FET (7,2). The device dimensions are: T = 15 nm, Ty, = 120 nm and L = 260 nm.
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Figure 3.6: I-V characteristics of CNT-FETs in subthreshold region of operation for
Qo1 = Qp2 = 0 for (a) CNT-FET (10,3) and (b) CNT-FET (11,3). The device dimensions are:
Tox; =40 nm, Ty = 400 nm and L = 50 nm.
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be the sum of /;; over all bands.
By letting the limit of E,, go to infinity and the transmission coefficient, 7; (E) = I

(implies ballistic transport), for the energy range of integration, Eq. (3.47) becomes:

AEF+q(V/('nl,s 7Vsb7¢0)7E(: AEF+q(V/('nI,57 de 7¢0)7E('
I, = qk—Tlln[l te i ] - ln(l te i ﬂ : (3.48)

Th

where Eq. (3.35) has been used to substitute the Fermi level energies at the source and drain. In
addition, the summation has been removed as higher conduction band energies will not
contribute to the current under low voltages and can be neglected. Figures 3.6(a) and (b) show
the I-V characteristics for the subthreshold operation of CNT-FETs with chiral vectors (11,3)
and (10,3), respectively.
3.4 Summary

The charge transport in a CNT-FET, based on our reported carrier concentration model,
has been used to relate the carbon nanotube potential and the gate substrate voltage. Analytical
solutions have been developed relating the carbon nanotube potential and the gate substrate
voltage. These solutions are then used to model analytically the current transport in a CNT-FET
depending on the chiral vector and device geometry. Threshold and saturation voltage model
equations are each derived in the process. CNT-FET is also modeled for subthreshold
operation. The analytical transport models have been used to generate CNT-FET I-V
characteristics for two different chiral vectors and compare them with the recently reported
experimental data for one of the chiral vectors, CNT (11,3). A close agreement is obtained
between the analytical models and the experimental observations in linear and saturation
regions. Some disagreement is noted beyond V,, above 1 V since the model equations do not

include a term similar to the channel length modulation parameter in a typical MOSFET.
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CHAPTER 4

THRESHOLD AND SATURATION VOLTAGES MODELING OF CARBON
NANOTUBE FIELD EFFECT TRANSISTORS (CNT-FETs)

4.1 Introduction

As we already know carbon nanotubes are one-dimensional (1D) graphene sheets rolled
in a tubular form [1] with electronic properties described by the chiral vector (n,m) [2,3]. In
Chapter 3, we have studied the structure of CNT-FET and derived an analytical model for the
current transport. In this chapter, we focus our attention on the threshold and saturation
voltages modeling using our analytical equations for the charge and current transport in carbon
nanotube field effect transistors.

In the past decade, several CNT-FETs have been fabricated [4-8] and their transfer
characteristics have been characterized experimentally [9-11]. Although threshold and
saturation voltages of the CNT-FET have also been reported [1,12,13], these are still
graphically extrapolated from the experimental measurements. However, not much effort has
been focused on establishing any theoretical relationship with the properties of the carbon
nanotubes. The present work focuses on threshold and saturation voltages modeling of CNT-
FETs based on the properties of the carbon nanotube. For better understanding, part of the work
described in Chapter 3 is repeated here in brief for completeness.

Figure 4.1(a) shows the basic cross section of a CNT-FET including the charge
distributions. Figure 4.1(b) shows the corresponding potential distributions between the gate
and substrate. In Fig. 4.1(a), charge distributions are explained as follows. The charge on the
gate is g, charges in oxide layers are Qy; and Qy», charge inside the CNT is Q.,, and the charge

in the substrate is Qqups. In Fig. 4.1(b), six different potential distributions are shown, which are
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Figure 4.1: (a) Plot of the charges from the gate to the substrate and (b) plot of the potential
distribution from the gate to the substrate in a CNT-FET.
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also described as follows. The voltage between the gate and the substrate (back gate) is Vg, the
potential drop across the oxides are ,,; and y,,», the surface potential in the substrate with
respect to the back gate is ., the potential across the CNT is ., and the work function
difference between the gate and the substrate materials is ¢,,;. The work function, ¢, can be

divided in two parts and is expressed as follows,
¢ms = ¢mc + ¢cs 4 (4 1)

where ¢, and ¢ are the work function differences between the metal gate and carbon
nanotube materials and the carbon nanotube and substrate materials, respectively. We can also
combine potentials Weu, Wox2, (es and wyps into a single potential, y.,.s, which describes the
potential at the interface of the gate oxide and carbon nanotube with respect to the back gate.

In a recent work [14], we have reported a method for calculating the carrier concentration
in a carbon nanotube under two limits: Limit 1 for << —/ and Limit 2 for # >> I, where

Ep-E. - . . . .
n=-57=. As a result, using the relation |Q..| = gnc,L, where n., is the carrier concentration

and L is the length of the carbon nanotube, the charge inside the carbon nanotube can be written
as follows:

Limit 1, y << -I:

Ep-E,

_gLN.Te ¥ | (4.2)

|ant

Limit 2,y >> I:

NEX-E?
=qLN,—L—<, (4.3)

kT

|ant

where

6,

[ I (kTx+E,)
VKT § x"*(kTx+2E,)"

e “dx (4.4)
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and

kT @5
3 Vel
An approximate solution for the integral / is given in Appendix A.

Using the potential balance and charge neutrality conditions for the field effect transistors

[15], the gate to substrate voltage is given by,

ant
=V, (4.6)

ng = l/lcnt,s -
oxl

where V, is the flat band voltage given by,

O

V. =¢ 4.7
fb ¢mc de ( )
The carbon nanotube potentials under the same limits are given below[16],
Limit 1: y <<-I:
l//cnt,s = ng - Vfb > (48)
Limit 2:  >> [:
V,=08le" —V, +om\V,, +@, —2c+ L it
Vs = promlVarh oo ) (4.9)
i 1+om
where
2E, -1
N +l-le
m=———01 (4.10)
q
and
qLN
S= c 4.11
c (4.11)

oxl

In Eq. (4.9), ¢bp and AEF are given as follows:
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_4 9
¢ =9, C (4.12)

ox2

and

AE, = ilen[Hi]. (4.13)
n

cnt,i

_E(‘

In Eq. (4.13), nu; is the intrinsic carrier concentration given by n_, . = N_I e T and N is the

cnt,i
ionized impurity concentration. Furthermore, AEr is positive for n-type carbon nanotubes
(donor atoms N = Np) and negative for p-type carbon nanotubes (acceptor atoms N = N,), and
Cox2 1s the oxide capacitance between the carbon nanotube and the surface of the substrate
given by,

2re L

C,,= ox2 . (4.14)
l“{]:)x2+r+ V]:)12+2]:)x2rJ
r

The charge inside the carbon nanotube, Q.,; can be obtained from Eq. (4.6) and is given

as follows,

ant == Coxl (ng - l//cnt,s - Vﬂ) ) (4 1 5)
Under Limit 1, Q¢ = 0 for v, =V, =V, . For the Limit 2, substituting Eq. (4.9) in Eq.

(4.15), Oy can be put in the following form:

_ _ _ AEp _ E. | kT -1
Qcm=—cm[5m(ng Vo =V fi{;m i) +ole } 4.16)

4.2 Threshold Voltage (Vi)
The threshold voltage, V in a metal oxide semiconductor is, by definition, the voltage at

which a conducting channel begins to form [17-20], the same definition can be applied in
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determining Vy, of a CNT-FET. Therefore, we can assume that Q.,, = 0 at V.
By setting Q. = 0 in Eq. (4.16) and solving for the gate voltage, we obtain an expression

for the gate voltage with respect to the substrate and is given by,

— ABp | E. _ kT _ Ie”!
ng - ij Vo + 9y T Ty T T (4.17)

Equating Eq. (4.17) with Vg, as Vg + Ve at the source end, we obtain an expression for the

threshold voltage, Vy;, which is given by,

AE E. e!
R R A (19

At the source end, V., becomes Vy;, the channel to substrate potential. Equation (4.18) for
Vi 1s the gate to source voltage, Vg, at which transistor begins to conduct. Equations (4.2) and
(4.3) can be used to plot the charge inside the carbon nanotube with respect to the gate voltage
as shown in Fig. 4.2(a) and (b) for two CNT-FETs with chiral vectors (3,1) and (7,2),
respectively. The solid line in Fig. 4.2 shows the variation of Q.. versus Vg, corresponding to
Egs. (4.2) and (4.3) following the numerical approach. The dotted line in Fig. 4.2 shows the
variation of Q. versus Vg, following the analytical approach corresponding to Eq. (4.16) for
the carbon nanotube potential and its extrapolation to Vg-axis gives the threshold voltage, Vi,
considering source and substrate to be at the same potential. The threshold voltage can also be
obtained graphically by drawing a tangent to the solid line in the Q.. versus V,;, curve in Fig.
4.2. The intersection with the Vg;-axis gives the threshold voltage.
4.3 Saturation Voltage (Vs sat)

In a CNT-FET, the saturation voltage, V. can be defined as the voltage at which the
charge inside the carbon nanotube becomes independent of Vy. It results for the current
becoming independent of V, in the I-V characteristics of the CNT-FET beyond V5. Equation

(4.16) can be used to solve for the drain to source voltage V. Since at the drain of the carbon
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Figure 4.2: CNT charge, Q.. versus gate voltage, Vg, for (a) CNT-FET of chiral vector (3,1)
with L=260 nm, To;=15 nm, T,,;=120 nm and Vyp=-0.79 V and (b) CNT-FET of chiral vector
(7,2) with L=50 nm, To,;=40 nm, and T;,x,=400 nm and V=0 V.
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nanotube field effect transistor (CNT-FET), Q. = 0, we can derive from Eq. (4.16) an
expression for the channel to substrate voltage at the drain, V. The expression for Vg is

obtained by replacing V., with Vg, at the drain end and is given by,

AE , -l
dengb_Vfb_¢o+ . _%_'_%T—i_%' (4.19)

From the Fig. 4.1(a) Vi is equal to Vs +Vg. In Eq. (4.19), substituting Ve, = Ve + Vg
and Vg = Vs + Vi, we obtain an expression for the drain to source voltage in saturation, Vg

as follows,

V, >Vgs_VthZVgS_(nb+¢O_MF+%_ﬂ_%)' (4-20)

ds,sat = q q

Figures 4.3(a) and (b) show a plot for the charge inside the carbon nanotube (Q.,,) at the
drain versus the drain to bulk voltage (V) for two CNT-FETs with chiral vectors (3,1) and
(7,2), respectively. The solid line in Fig. 4.3 represents a numerical approach using Egs. (4.2)
and (4.3). The dotted line represents an analytical approach following the Eq. (4.16) and its
extrapolation to Vy-axis gives Vys .. It should be noted that in Fig. 4.3, Q.,, = 0 at the drain
under the Limit 1 (y << -I).

In a manner similar to the threshold voltage derivation, a tangent line to the solid line in
Fig. 4.3 can also be drawn and the saturation voltage can be obtained from the intersection of
the drawn tangent line with the V-axis considering source and substrate to be at the same
potential.
4.4 Results

Table 4.1 summarizes the results of threshold and saturation voltages for different CNT-
FETs using Egs. (4.18) and (4.20). The same device geometries used by Wind et al., [13] have
been utilized in these calculations. The modeled threshold voltage for the CNT-FET (3,1)

closely matches the experimentally measured threshold voltage in [13] (|Vi| ~ 0.5 V). It is also
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Figure 4.3: CNT charge, |Q. at the drain versus drain to bulk voltage, Vi, for (a) CNT-FET of
chiral vector (3,1) with L = 260 nm, To.; = 15 nm, Too = 120 nm and Vp, = -0.79 V and (b)
CNT-FET of chiral vector (7,2) with L = 50 nm, To; = 40 nm, Tp2 = 400 nm and Vy, = 0 V.
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Table 4.1. Calculated threshold voltage (V) and saturation voltage (Vs,sar)
of CNT-FETs from the model equations for different carbon nanotubes

CNT-FET Vassat (V)
(n,m) Van (V) Ve =15V V=2V
(3.,1) 0.469 1.031 1.531
(3,2) 0.154 1.346 1.846
(4,2) 0.040 1.460 1.960
(4,3) -0.107 1.607 2.107
(5,0 0.143 1.357 1.857
(5,1) -0.066 1.566 2.066
(5,3) -0.176 1.676 2.176
(6,1) -0.105 1.605 2.105
(7,3) -0.333 1.833 2.333
9,2) -0.393 1.893 2.393
(11,3) -0.462 1.962 2.462
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observable from the Table 4.1 that both Vy;, and V. are dependent on the chiral vector (n,m).
Furthermore, negative threshold voltages are pointing toward the depletion mode behavior.
4.5 Summary

Model equations for threshold and saturation voltages in CNT-FETs have been derived,
which are dependent on chiral vectors of carbon nanotubes. These model equations provide
designers with useful mathematical expressions relating the properties of conductivity of
carbon nanotubes and their response in circuit applications. The theoretical results show
agreement with graphically extrapolated threshold and saturation voltages. The model
equations in this work provide a better understanding of device modeling of carbon nanotube
field effect transistors (CNT-FETs).
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CHAPTER 5

VOLTAGE TRANSFER CHARACTERISTICS OF LOGIC GATES USING
CARBON NANOTUBE FIELD EFFECT TRANSISTORS (CNT-FETS)"

5.1 Introduction

In previous chapters, we have seen how carbon nanotubes have been the primary focus of
many researchers, and many applications have been proposed over the past decade including
nanometer-sized semiconductor devices [1-3]. The first fabricated CNT-FETs, as it was
described in Chapter 1, showed a Schottky barrier phenomena, resembling Schottky diode
characteristics at the electrode contacts [4-6], a fact that had been a real disadvantage since
MOSFETs do not show these Schottky barriers [7,8]. However, with latter CNT-FETs
fabricated in 2004 [1,9] without any of this barrier characteristic, carbon nanotube based
technology has successfully arisen closer to replacing current CMOS technology especially
with the end of Moore’s law in sight [10-12]. Logic gates using CNT-FETs have already been
fabricated [13-15] and their transfer characteristics have also been presented [14-17]. In this
chapter, our previous analytical models for the current transport (Chapters 3 and 4) have been
utilized to derive and present the transfer characteristics of basic logic gates needed to build
systems and to show the variation of the chiral vectors (n,m) of carbon nanotubes on these
voltage transfer characteristics.
5.2 Current Equation

Although the computer simulations performed in this work were done using intrinsic

" Part of the work is reported in the following publication:

J. M. Marulanda, A. Srivastava and A.K. Sharma, “Transfer characteristics and high frequency modeling of logic
gates using carbon nanotube field effect transistors (CNT-FETSs),” Proc. of The 20" Annual Conference on
Integrated Circuits and Systems Design (SBCCI 2007), pp. 202-206, (Rio de Janeiro, Brazil, September 3-6,
2007).
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carbon nanotubes, CNT-FETs work under the same conditions as in CMOS [10] and therefore,
can be classified as n-type and p-type transistors [9]. Figure 5.1 shows the basic cross sectional
view of a CNT-FET. Relevant current transport modeling equations from Chapters 3 and 4 are
given below for completeness and clarity in presentation. Even though the model equations
described in this section are for n-type transistors, the same model equations can be applied for
p-type transistors by changing the respective parameters and voltage polarities.

The current model equation for CNT-FETs is described as:

[ds = ﬁ[f{l//cnt,s (L)’ I/gs } _f{l//cnt,s(o)’ I/vgs }] > (5 1)
where
P I =4V, Y+ )y, (93072, ) 52)
and

C
p= 7—ﬂL2 = (5.3)

In Eq. (5.3), L is the gate length, u is the carrier mobility, 7 is a conversion factor for the carrier
mobility in CNT from the graphite with a value ranging from 0 to 1 and can also be used to

represent how much surface area of the CNT is responsible for the charge flow. In the present

work 7= 1. K is Boltzmann’s constant, 7'is temperature, V' is the flat band voltage given by

V= 2 (5.4)

oxl

where ¢, is the contact potential difference between the gate and the carbon nanotube, Qy; is
the trapped charge in the gate oxide (Fig. 5.1) and C,,; is the gate oxide capacitance given by

[18,19]
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Figure 5.1: Cross sectional view of a CNT-FET.

87




2re L

C,.= vl , (5.5)
l'{]:)xl_l—r_‘_ V]:il_l—z]:)xlrJ
r

where T,,; is the thickness of the gate oxide, 7 is the carbon nanotube radius and ¢&,,; is the
permittivity constant of the gate oxide.
The transistor turns-on when the carbon nanotube has become significantly conductive.

This condition occurs when the gate to source voltage, Vg, > threshold voltage, Vy, given by the

equation,
AE. | E, Je!
VgsZVth:Vfb-’_¢O_T+7_liTT_%’ (5.6)
2E, -1
N tl-1e
where m =~ and I is a specific integral of each carbon nanotube defined by

2kT
q

6E,

1 (KIx+E)
1= e
VKT o x"?(kTx+2E,)

~dx, (5.7)

where E. is the energy conduction band minimum. An approximate solution for the integral 7 is

given in Appendix A. Under this condition Vg > Vi, Eq. (5.1) can be used.

In Eq. (5.6), ¢ and AEF are defined as follows:

_p _Ln
b=0s= (5.8)

ox?2

where Oy is the trapped charge in the SiO, (Fig. 5.1).

AEF:J_rlen[1+ N ] (5.9)

n

cnt,i

where n.,,; 1s the intrinsic carrier concentration given by,

7EC

n_=Nle" | (5.10)
cnt,1 c
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where N, = _ Sk and N is the ionized impurity concentration.
3 Vopet

Furthermore, AEF is positive for n-type carbon nanotubes (donor atoms N = Np) and
negative for p-type carbon nanotubes (acceptor atoms N = Ny). C,,. is the oxide capacitance

between the carbon nanotube and the surface of the substrate given by

275l (5.11)

Cox2 = D) .
l“[z-;x2+r+ V]:)x2+27:)x2rJ
r

where T,,; is the thickness of the SiO; and &,,, is the permittivity constant of the oxide.

Under the condition Vg > Vy;, described by the Eq. (5.6), the carbon nanotube potential at

the source end, w...s(0) can be obtained, which is given by,

VitV =ole” =V, +5m(Vsb +h— 2 +5—’i)

Ve, (0) = . ¢ 9 9/ (5.12)

Equation (5.12) is obtained from Eq. (3.40) after substituting Ve, = Vg + Vi and
Ve = Vi at the source. Furthermore, in Eq. (5.12), ‘m’ is defined for the slope as in Chapter 3.
Similarly the carbon nanotube potential at the drain end, .. (L) can be obtained in two

regions of operation of the CNT-FET depending on the drain to source voltage, V4. These two
regions are: linear region (Vds SV — Vth) and saturation region (Vds 2V, - Vth) The carbon
nanotube potential in these two regions is given by,

Linear Region (Vds <V =Va ):

VotV =0l <V Sl + V4 4= + 5

W ey (L) = T </ (5.13)

Equation (5.13) is obtained from Eq. (3.40) after substituting Ve, = Vg + Vi and

Ve, =V, = Vg + Vi, at the drain.
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Saturation Region (Vds 2V = Vy ):

l//cnt,s (L) = ng - Vfb = Vgx + Vsb - V/b H (5 14)

where

s=9EN. (5.15)
C

ox1

5.3 Logic Gates Modeling

CNT-FETs can be made both n- and p-type as in CMOS [10], making possible the
implementation of CNT-FETs as fully complementary logic, such as the inverters, NOR and
NAND gates as shown in Fig. 5.2. These are the basic building blocks needed for building any
digital system.

As stated earlier, the model equations characterizing current voltage transport described
in Section 5.2 are for the n-type CNT-FET but can also be used for the p-type CNT-FET by
changing the polarities of the voltages as in standard CMOS. In generating voltage transfer
characteristics, we have used Egs. (5.1), (5.13) and (5.14) and two complementary CNT-FETs
with two different chiral vectors.

Figures 5.3 shows the voltage transfer characteristics of an inverter and a two input
NAND gate for a chiral vector (5,3). Figure 5.4 shows the voltage transfer characteristics of an
inverter and a two input NOR gate for a chiral vector (7,3). In NAND and NOR gates, transfer
characteristics have been obtained for varying input conditions as shown in both Figs. 5.3 and
5.4. The transfer characteristics of the CNT-FET inverter are similar to the transfer
characteristics of a typical CMOS inverter and show a sharp transition at the inverter logic
threshold voltage, 1.5 V for a 3 V operation. The gates, NAND and NOR also show a sharp

transition in their transfer characteristics for a 3 V operation.
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Figure 5.2: CNT-FET logic: (a) Inverter, (b) two input NAND gate and (c) two input NOR
gate.

91



2-Input NAND Gate

3
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Figure 5.3: Voltage transfer characteristics of an inverter and a NAND gate using CNT-FETs

(5,3). The dimensions of both the n-type CNT-FET and p-type CNT-FET are: T,,; = 40 nm,
T,c2 =400 nm and L = 50 nm.

92



2-Input NOR Gate

78]

251 + Inverter
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>
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Figure 5.4: Voltage transfer characteristics of an inverter and a NOR gate using CNT-FETs
(7,3). The dimensions of both the n-type CNT-FET and p-type CNT-FET are: T,,; = 40 nm,

To2 =400 nm and L = 50 nm.
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5.4 Summary

Analytical model equations for the current transport in a CNT-FET have been used to
characterize voltage transfer characteristics of complementary logic devices such as the
inverter, NAND and NOR gates. The voltage transfer characteristics of the CNT-FET inverter
are similar to the voltage transfer characteristics of a typical CMOS inverter and show a sharp
transition at the inverter logic threshold voltage, 1.5 V for a 3 V operation. The gates, NAND
and NOR also show a sharp transition in their transfer characteristics for a 3 V operation. The
results presented provide designers with a better understanding of carbon nanotubes and their
potential for use in designing of integrated circuits for a wide range of applications.
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CHAPTER 6

HIGH FREQUENCY RESPONSE’

6.1 Introduction

As we already know carbon nanotubes are basically one-dimensional graphene sheets
rolled into a tubular structure [1]. Their properties depend on the chiral vector and are
represented by the indices (n,m) [2,3]. CNT-FETs are being explored extensively as the
structure material for making future CMOS devices and circuits [4-6]. Efforts have been made
in modeling their current transport behavior. The current transport models including analytical
models presented in Chapters 3 and 4 have been developed for the design of CNT-FET based
logic devices [7-12]. High frequency CNT-FET models have also been realized [13-16]. In this
chapter, we present a small signal rf equivalent circuit model of the CNT-FET to study its high
frequency response and the effect of the variation of the chiral vectors (n,m) of carbon
nanotubes on small signal parameters and high frequency response for logic devices.
6.1.1 Small Signal RF Equivalent Circuit Model

The small signal high frequency model for CNT-FETs is shown in Fig. 6.1, where Cg is
the gate to source capacitance. The parasitic gate capacitances between gate to source and gate
to drain are characterized by Cpurgs and Cparga, respectively. I;(n,m) is the drain current
depending on the chiral vector (n,m). R, and R, are the source and drain resistances.

R;s represents drain to source resistance. C,y, is the substrate oxide capacitance. The small

" Part of the work is reported in the following publications:

1. J. M. Marulanda, A. Srivastava and R.K. Nahar, “Ultra-high frequency modeling of carbon nanotube field-
effect transistors (CNT-FETs), Proc. 13" International Workshop on the Physics of Semiconductor Devices
(IWPSD), (Delhi, India, December 13-17, 2005).

2. J. M. Marulanda, A. Srivastava and A.K. Sharma, “Transfer characteristics and high frequency modeling of
logic gates using carbon nanotube field effect transistors (CNT-FETs),” Proc. of The 20" Annual Conference
on Integrated Circuits and Systems Design (SBCCI 2007), pp. 202-206, (Rio de Janeiro, Brazil, September 3-
6, 2007).
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Figure 6.1: Small signal high frequency equivalent circuit model of a CNT-FET.
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signal model parameters are obtained as follows.
6.1.2 Resistance and Capacitance Models

The resistance of a conductive CNT can be expressed as [13,21,22],

cht=R0+Rch= h2 + hzi s (61)
4q 49" L,

where 4 is Planck’s constant, R, and R.; are the contact and channel resistances, respectively.

R.j 1s basically the equivalent drain to source resistance, Rj. Ly is a parameter that models the
mean free path of an electron in a CNT. The total mean free path Ly, in a CNT is given by [23-
25],
L )
gz——b}—q, (6.2)
qus

nQ,

n
where scattering mechanisms such as phonons, noise, and impurities are modeled using the

summation factor; 7Q), represents the energy of the ny, scattering mechanism and 7 = % .

The contact resistance, R, in Eq. (6.1) can be divided in two equal parts corresponding to
the source and drain resistances as shown in Fig. 6.1. Using Eq. (6.2) we obtain the resistances,

R, and R; of a CNT-FET as follows:

R =R =—t=—"_ (6.3)

Substituting Eq. (6.2) in R, of Eq. (6.1), which is the equivalent drain to source

resistance; Ry is obtained as follows,
h 1
R =—V > —. 6.4
ds 4q dsZn: hQn ( )

In Fig. 6.1, C,2, the oxide capacitance between the carbon nanotube and the surface of
the substrate is described in Chapter 5 by the Eq. (5.11) and repeated here,
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2ze L

C = ox2 . (6.5)
1“[7:1)(2 +r+ V]:)%CZ + 27—;).v2rJ
r

As described in Chapter 4, the charge inside the carbon nanotube is given by,
ant = Coxl (ng - l//cnt,s - Vfb ) (66)

where y.,(0) is given by the Eq. (5.12) in Chapter 5 and repeated here,

Vi +V,,—~Sle™ =V, +5m(V,, +@— e + 5 1)

Vo (0)= o ‘ e/ 6.7)
where
5= qéN . (6.8)

ox1

Using Eq. (6.7) for the carbon nanotube potential, w..(0) and substituting Ve, = Vgs + Vi
in Eq. (6.6) we can find the total gate to source capacitance, Cg, of Fig. 6.1 by differentiating

with respect to V. Cyq is then given by,

om
C.=C_|—|- 6.9
gs oxl(l_i_évmj ( )
The parasitic capacitances, Cpurgs and Cpqr.oq are given by [26,27]
gogoxW T ol
Cpar = Cpar,gs = Cpar,gd = /2 l'{l + ;—;:J’ (610)

where T, and W are respectively the thickness and width of the gate.
6.1.3 Transconductance and Discussion

The transconductance, g,, is defined as follows:

ol
Em = 5,
ov,

S

, (6.11)

V,=constant

where ;5 in Eq. (6.11) is given in Chapter 3 by Eq. (3.44) and is repeated below,
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L= Bl W eV} = S W 00V, 1] (6.12)

where
S W@ =V 40,V 42y, L2, () 6.13)
and
C
p= WLQ = (6.14)

Substituting Eq. (6.12) in Eq. (6.13), we obtain,

(L ()
Ids :ﬁ|:(Vgs + I/sb - V/b +k7T)cht,s(L)_l//cm’TS()_(Vgs + I/sb - Vfb +k7T)l//cnt,s(0)_l//c%S():| (615)

Differentiating Eq. (6.15) with respect to Vy,, we obtain,

ol s al//cn .S (L) al//cn K (L)
a—VZS = ﬂ|:‘//cnt,s (L) + (Vgs + V;b - V/‘h + %)a—r;gg - (//cnt,s (L)a—ljvgs
(6.16)
a l//cnt,x (0) a l//cn ,S (O)
- l//cnt,s (O) _(Vgs + Vsb - Vfb + kTT)a—I{gS - l//cnt,s (O)a—Vtth '
In saturation region (Vas > Ves — Vi),
cht,s (L) = Vgs + I/sb - Vfb . (6 17)

Differentiating Eq. (6.7) for y.,(0) and Eq. (6.17) for w..(L) with respect to Vg, we obtain,

a l//cnt,s (O) _ 1

= 6.18
OV, 1+om (6.18)
and
oy, \L
Voo L) _ (6.19)
ov.

gs

Combining Egs. (6.16), (6.18) and (6.19) we obtain,
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om 2+0m

Vi V=V, +KT 0 . 6.20
Substituting Eq. (6.7) for w...(0) in Eq. (6.20), we obtain,

g Lq W q

-1 AE, | E,
B [ Y+ ole =V, romlV, +gm 2 45 )01 5m) 621
" 1+6m (1+5m)’

6.2 Results

Table 6.1 shows the calculated small signal model parameters (gm, Ras, Cys)
corresponding to the equivalent circuit of a CNT-FET shown in Fig. 6.1 for different chiral
vectors (n,m). The model parameters have been calculated as follows. The transconductance,
gm has been calculated using the Eq. (6.21). The resistances and capacitances have been
calculated from Egs. (6.3) - (6.10) for Qp; = Qo> = 0, Vp, = 0, L = 50 um, T, = 1000 A,
W =10.5um, Toy; = 40 nm and T,,, = 400 nm. The parasitic capacitances are common to all
values of chiral vectors in Table 6.1 and are as follows: Cyspar = Coiapar = 13.763 aF. The small
signal parameters are very dependent on the chiral vector of the carbon nanotube as noticed
from Table 6.1.

The cut-off frequency of a CNT-FET can be examined analytically from Fig. 6.1 using an

equation of the form [13,28]:

_ L i
Jr= 2z |C,(1+R.g,)+C,,2+2R g, +Rg,)]| (6.22)

In order to calculate the cut-off frequency for a CNT-FET, the transistor is considered in
saturation. Values of Vg and Vy are chosen and g, and Ry are then calculated. Figure 6.2
shows the variation of the cut-off frequency with g, from Eq. (6.22) for a CNT-FET with chiral
vector (11,3). Table 6.2 shows the dependence of cut-off frequencies of CNT-FETs on chiral
vectors. The cut-off frequencies of CNT-FETs are obtained from SPICE using the small signal
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Table 6.1. Small signal parameters for CNT-FETs

CNT-FET (n,m) gm (uS) Rys (KQ) Cy (aF)
(3,1 116 132 1.673
(3.2) 138 155 1.711
4.2) 151 163 1.768
(4.,3) 163 174 1.799
(5,1) 158 171 1.744
(5,3) 172 179 1.844
6,1) 166 174 1.832
(7,3) 188 190 1.910
9,2) 197 195 1.954
(11,3) 209 200 2.034

102




fr (GHz)

700

600

500

300

200

100

CNT-FET (11,3)

20 40

60

80

1
100
gm (US)

|
120

|
140

|
160

|
180

Figure 6.2: Dependence of cut-off frequency on g, of a CNT-FET (11,3).
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Table 6.2. Cut-off frequencies for CNT-FETs

CNT-FET (n,m) fr (GHz)
(3,1) 544
(3,2) 617
(4,2) 657
(4,3) 700
(5,1) 683
(5,3) 728
(6,1) 709
(7,3) 765
(9,2) 795
(11,3) 815
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model parameters given in Table 6.1 for different chiral vectors.
6.3 Summary

We have developed a small signal equivalent circuit model for characterizing CNT-FETs
at radio frequencies. The results of the cut-off frequencies show values in the upper GHz range,
with a strong dependence on the chiral vectors and corresponding transconductance. The small-
signal model can be easily used in SPICE for circuit design based on CNT-FETs.
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CHAPTER 7

BIO- AND CHEMICAL APPLICATIONS”

7.1 Introduction

Single-walled carbon nanotube (SWNT) graphite cylinders are composed of surface
atoms. Because of their size, large surface area and hollow geometrical shape, carbon
nanotubes are the best-suited materials for gas absorption, storage and molecular filtering [1].
Many carbon materials are known to possess excellent molecular adsorption properties. Carbon
nanotube is among one of the materials, which has exhibited significant changes in its
electronic properties when subjected to molecular adsorbates. The unique structure and
sensitivity to molecular adsorbates have resulted in use of carbon nanotubes for bio- and
chemical sensing applications. Both conductance and capacitance based CNT-sensors have
been developed for detecting traces of a wide range of chemical vapors and gases including
traces of nerve agents and explosives [2-6]. In this chapter, we have given a brief description of
carbon nanotube field effect transistor (CNT-FET) based sensors for bio- and chemical sensing
applications and we have shown how our presented model equations [7,8] in Chapter 3 can be
used for interpreting the effect on the I-V characteristics when CNT-FETs are exposed to a bio-
molecular environment.
7.2 Carbon Nanotube Sensing Mechanism

Snow, et al., [9] have provided an excellent review of chemical vapor detection using

single-walled carbon nanotubes. Kong, et al., [10] and Collins, et al., [1] were the first ones to

" Part of the work is reported in the following publication:
J. M. Marulanda, A. Srivastava and A.K. Sharma, “Current transport modeling in carbon nanotube field effect
transistors (CNT-FETs) and bio-sensing applications,” Proc. SPIE Smart Structures and Materials &

Nondestructive Evaluation and Health Monitoring: Nanosensors and Microsensors for Bio-System, vol. 6931,
pp- 693108-1-693108-12, (San Diego, CA, March 9-13, 2008).
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demonstrate change in conductance of p-type CNT to certain molecular adsorbates such as the
NH3s, an electron donor and the NO», an electron acceptor, resulting in decrease and increase in
conductance. NH; and NO; are known as hazardous gases.

Collins et al., [1] have shown that the electronic properties of SWNTs are extremely
sensitive to oxygen or air and dramatically change the electrical resistance, thermoelectric
power and local density of states, N(E). Atashbar et al., [11] have fabricated a simple SWNT
conductance based sensor for the detection of streptavidin and mouse monoclonal
immunoglobulin G (IgG) antibody. Figure 7.1 shows the schematic representation of the bio-
sensor for detecting G (IgG).

Carbon nanotubes have been used for the detection of DNA. The detection of DNA is
important to the detection of infectious agents, drug delivery and warning against bio-warfare
agents. Wang et al., [12] have demonstrated the use of CNTs for enzyme-based bioaffinity
electrical sensing of proteins and DNA, which relies on hybridization or antigen-antibody (Ag-
Ab) interactions. Tang et al., [13] have developed a fully electronic DNA sensor based on
CNT-FETs. Figure 7.2(a) shows the optical image of the central region of a single sensor chip
with four SWNT-FETs. Figure 7.2(b) shows the concept illustration of a single CNT-FET
during electrical measurements.

After mercaptohexanol (MCH) attachment, I-V, curves are taken by a sweeping silicon
backgate. I-V, characteristics exhibit the device conductivity due to change in alignment in the
energy level before and after DNA hybridization as shown in Fig. 7.3.

Snow et al., [9] have experimented with a SWNT network type sensor, a cross-section of
which is shown in Fig. 7.4. The SWNT sensor of the type shown in Fig. 7.4 can be used both as

a conductance sensor and capacitive sensor [3].
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Figure 7.1: Simple SWNT conductance-based bio-sensor for detecting 10 ul IgG antibody [11].
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NN\ Complementary Target DNA (CM)
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Figure 7.2: (a) Single sensor chip with four SWNT-FETs and (b) illustration of a single SWNT-
FET during electrical measurements [13].
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Figure 7.3: Energy level alignment between Au and SWNT (a) before and (b) after DNA
hybridization [13].
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Figure 7.4: Cross-section of a SWNT network sensor [9].
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7.3 Summary

Semiconducting SWNT molecular wires and SWNT-FET based sensors are promising
compact ultra-sensitive and ultra low-power advanced miniaturized sensors in comparison to
conventional sensors. Their ability to operate at room temperature and detect traces of bio-
warfare agents and chemical agents (nerve agents, blister agents and explosives) show a great
promise for defense and homeland security applications. The presented research on current
transport modeling can be easily applied in providing explanations to reactions taking place in
the CNT and CNT-FET sensors when exposed to traces of bio- and chemical agents at a
molecular level. Carbon nanotubes field effect transistors are therefore very promising devices
for use in bio-sensing applications.
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CHAPTER 8

CONCLUSION AND SCOPE OF FUTURE WORK

8.1 Conclusion

In this research, we have studied and analyzed the physical and electrical properties of
carbon nanotubes. We have used the density of states function and energy band structure of
carbon nanotubes to derive analytical solutions for calculating the intrinsic carrier
concentration and effective mass in carbon nanotubes. The temperature dependence of the
carrier concentration and energy band structure was also established.

Based on our reported carrier concentration model, we have related the carbon nanotube
potential and the gate substrate voltage and developed analytical solutions relating these
potentials. These solutions are then used to analytically model the current transport in a CNT-
FET depending on the chiral vector and device geometry. Model equations for threshold and
saturation voltages in CNT-FETs were each derived in the process and they are found to be
dependent on the chiral vectors of carbon nanotubes.

The derived analytical current transport model has been used to generate CNT-FET I-V
characteristics for two different chiral vectors and these I-V characteristics have been compared
with recently reported experimental data for one of the chiral vectors, CNT (11,3). A close
agreement is obtained between the analytical model and the experimental observations in linear
and saturation regions. Theoretical results also show agreement with graphically extrapolated
threshold and saturation voltages.

The derived analytical transport model equations have also been used to characterize
voltage transfer characteristics of logic devices based on complementary CNT-FETs such as

the inverter, NAND and NOR gates. The voltage transfer characteristics of the CNT-FET
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inverter are similar to the voltage transfer characteristics of a typical CMOS inverter and show
a sharp transition at the inverter logic threshold voltage. The gates, NAND and NOR also show
a sharp transition in their transfer characteristics. In addition, a small signal equivalent circuit
model for characterizing the CNT-FET at radio frequencies has also been developed, which can
be easily implemented in SPICE for circuit design. The results of the cut-off frequencies show
values in the upper GHz range with a strong dependence on the chiral vectors and
corresponding g,,.

CNT-FET based sensors are promising compact ultra-sensitive and ultra-low power
advanced miniaturized sensors in comparison to conventional sensors. Their ability to operate
at room temperature and detect traces of bio-warfare agents and chemical agents show a great
promise for defense and homeland security applications. The present work on current transport
modeling can be easily applied in providing explanations to reactions taking place in CNT and
CNT-FET sensors when exposed to traces of bio- and chemical agents at a molecular level.

The calculations obtained provide useful understanding of the conductivity in carbon
nanotubes and electrical modeling, especially when dealing with impurities, doping
concentrations and its effects on the electronic band structure of these hexagonal crystal lattice
materials. The model equations also provide designers with useful mathematical expressions
relating the properties of conductivity of carbon nanotubes and their response in circuit
applications.

8.2 Scope of Future Work

Ballistic transport is not applicable to the current length of fabricated CNTs in CNT-
FETs (~100 nm or more). However, with the advancements in technology of carbon nanotubes,
channel lengths of few nanometers can be fabricated and I-V characteristics must then consider

the ballistic transport. In our model, under subthreshold regime, a current equation has been
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used based on a sub-band description of the electronic structure and ballistic transport. This
equation can be further expanded to cover the normal operation of the transistor, which will
incorporate the ballistic transport. The present work on current and charge transport model does
not include velocity saturation for electrons in carbon nanotubes and the mobility is assumed
constant. The present work can be further refined by inclusion of ballistic transport, velocity
saturation effects and mobility considerations in carbon nanotubes.

Furthermore, the present research can be coupled with a carbon nanotube interconnect
modeling for analysis and design of all CNT-FET based analog and digital integrated circuits.
Similar to SPICE MOS models, SPICE CNT-FET models can also be developed and is
suggested for future work.

It was shown in Chapter 7 that the present research on current transport modeling can be
applied in providing an explanation to reactions taking place in the CNT and CNT-FET sensors
when exposed to traces of bio- and chemical agents at a molecular level. Experimental CNT
and CNT-FET bio- and chemical sensors can be designed and developed based on the current

research.
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APPENDIX A

CARRIER CONCENTRATION INTEGRAL

In Chapter 2, we came upon an indefinite integral for the carrier concentration given by,

[ I (kTx+E.)
JET 3 x"(kTx+2E, )"

e “dx. (A.1)

In Eq. (A.1), the integral, /, has no definite solution. However, an approximate solution can be
found by representing the exponential function, ¢, with a series of polynomial functions using
the Taylor series expansion approximation [1,2] around a variable A.

We first represent the exponential function as:

2 3
e_xze_{l—(x—A)+(x_2A) —(x_6A) } for A<x<A+1 (A2)

Equation (A.2) is a very good approximation within the range of 4 to 4+1. In order to extend
the range of approximation from A+/ to an arbitrary integer number n, we introduce a

summation to cover all x. Equation (A.2) becomes

e-xzie-{p(x—A)Jr(x_A) x-4) } for ASx<A+1 (A.3)

2 6

Replacing the exponential term in the integral of Eq. (A.1) with the approximated polynomial
expression for the exponential function (A.3) we obtain:

-4

I =

e & 1 (kIx+E, x—A) (x—4)
JkT AZ: x”ZEkTHzE))”2 {1_(X_A)+( PR (A9
=V 4 c

. . 6E . . . . .
where A4, can be set at a maximum integer value of —= as discussed in Section 2.3.1. This

integral can now be solved analytically. The procedure involved in solving the integral of Eq.
(A.4) is a complicated mathematical process; however, the solution is only a polynomial
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expression, which can be expressed as follows:

1= A el 1 2£) I L2 1By 1 (E)z 1 4E
L e xx+2kT[1 Ix+4+lZeply? Loy Lgxtl +5 Ao

P T (4 FEU/LIR NS (AS)

24 kT

—%(k—;)zw% (£;)2+;A” tA A
x=A+1
+§(f—;)2[l+A+f—;+%A2 Le 5 (L )z]ln[ +\/_x+1/ka +2xE, ]}

It should be noted that this integral is independent of the Fermi energy and characteristic of the
chiral vector (n,m) of any particular carbon nanotube. Thus, it will remain constant at any bias

voltage but dependent only on the temperature.
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APPENDIX B

ANALYTICAL DERIVATION FOR THE CARBON NANOTUBE
SURFACE POTENTIAL

In Chapter 3, we found an equation for the gate to substrate voltage of the form:
ng = l//cnt,s + 5f(l//cnt,x > Vcb )+ I/ﬁ) > (B 1)

where

AEF+q(‘//z'n1.x Ve _¢0)_E(‘

Ie K ; fory . SV, +@ - AEF +%—%T
Teusba)- JOE, +qy.,,. ;;{Vd, ~q¢,) —E? or o, 2 Vb o= e Bt - 02
and
5= (B.3)

Coxl

As it was discussed in Chapter 3 the gate voltage can be defined using three regions of

operation. However, Eq. (B.1) is only defined for two regions due to the boundary

condition of ... Region 1 for ’//cm,SSVCbJF%_%*‘%—%T and Region 3 for

Wens 2V + & —% + % +"7T. Region 2 is obviously undefined by Eq. (B.1) and the limits of

this region can be expressed as:
AE E kT AE E kT
I/Cb—l—¢0_ qF+7C_T<cht,S<I/Cb+¢O_ qF+7C+7' (B4)

Furthermore, Eq. (B.1) cannot be solved explicitly for . in terms of the terminal
voltages. In this appendix, we will show a derivation for a gate voltage equation in Region 2,
which covers the gap predicted by Eq. (B.1). We will also describe how the gate voltage
equation can be solved analytically for the carbon nanotube surface potential and using only

two regions of operation. As a result, a carbon nanotube surface potential equation is found
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under two regions of operation and explicitly dependent in the terminal voltages.

The discontinuity in the gate voltage equation comes from the term f{ ..., Vep). We can
extrapolate a linear equation for the Region 2 by first picking two points: Point 1 for the higher
limit of Region 1 at v, , =V, + 4, —% + % —%T and Point 2 for the lower limit of Region 2

AEp
q

at v, =V, +@ —="++%, we can then write:

V(2 0 (B.5)

So(Ven Vs )= + 1. (B.6)

From Egs. (B.5) and (B.6) we obtain a slope, ‘m’ given by,

2E, -1
- N
m=—tah Nt T (B.7)

- _ 24T
‘//cnt P ‘//cnt ,5) q

From basic mathematics we can write a linear equation for f{ ¥, Ves) as:

f(llycnt,sﬁ chb)_ﬁ(l//cnt,sl’l/cb ): m(l//cnt,s_ l//cnt,sl)' (B8)
By substituting Eqgs. (B.5) and (B.7) in Eq. (B.8) we arrive at a final expression for the

S(Wensss Ver) iIn Region 2 expressed as:
f(l//cnt,s’ Vcb): m (‘//cnt,s_ ¢0 _% - Vcb + liTT)+ 1671 . (B9)

By substituting Eq. (B.9) in Eq. (B.1) we can write a gate voltage equation for Region 2,

Ver = Veris= Vo +m (Vo= o+ 555 =5 =Vt ) 1 1™ (B.10)

q

Equation (B.10) can be used to solve for ., as follows:

V,y—Sle” ¥, +m(V,+ g~ Lt )

q9 q9 q9
1+6m

l//cnt,s = ) (B 1 1)

AE,

AEr | E kT
for I/cb-i-¢0_ q[' +7c_7<l//cnt,s<l/cb+¢0_ q

4 Lo 4 kT
q q
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The rapidly decreasing exponential behavior of f{(w., V) in Eq. (B.1) for
Vores SV + &y —%+%—’;—T allows us to assume that the dependence of the gate voltage on
the carbon nanotube surface potential in this Region 1 is linear. Therefore, the term off W s, Ver)
becomes negligible in Region 1. In addition, as it was discussed in Chapter 3, for low power

conditions Region 2 can be further extended to cover Region 3. Under these assumptions we

can define the carbon nanotube surface potential to be given by two regions of operation as:

Region I, for 0<V,, <V, +V, +¢, —%+%—%T—%
l//cnt,s :ng _Vﬁﬂ (B12)
Region 2, for V,, 2V, +V, + ¢, —%—k%—’%—%

ng ~sle” _V.fb +om ( Vcb+¢0_AEF +%_kl )

q q

l//cnt,s = B (B 1 3)

14+ 0m
where the inequalities in Egs. (B.12) and (B.13) for Region 1 and Region 2, respectively, can
be recognized as the threshold voltage. The threshold voltage is addressed and derived in more

detailed in Chapter 4.
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APPENDIX C

MODEL PARAMETERS
Symbol Units Description
n - Number of hexagons along the a; direction
m - Number of hexagons along the a, direction
L nm Length of the carbon nanotube
IR| nm Circumference of the carbon nanotube
Vopx eV Energy transfer integral for carbon nanotubes
E. eV Conduction band energy
Amount by which the Fermi level shifts from
+AEF eV intrinsic energy level. It is negative for p-type
and positive for n-type carbon nanotubes
Vb Volt Gate to substrate (back gate) voltage
Went Volt Carbon nanotube potential
Went.s Volt Carbon nanotube surface to substrate potential
Woxl Volt Gate oxide potential
Wox2 Volt Substrate oxide potential
4 Volt Gate to subst‘rate (back gate) work
" function difference
4 Volt Gate to car}aon ganotube work
e function difference
Oes Volt Gate to substrate work function difference
b Volt Value of thi potential of g/c,,t,s when
ng — Vfb and Went = 0
Vi Volt Flat band voltage
0O, Coulomb Charge in the gate
Qoi Coulomb Charge in the gate oxide
Oo> Coulomb Charge in the substrate oxide
Ocnt Coulomb Charge inside the carbon nanotube
Osubs Coulomb Charge in the substrate
Toxi Angstrom Thickness of the gate oxide
Tox2 Angstrom Thickness of the substrate oxide
Cox1 Faraday Gate oxide capacitance
Cox2 Faraday Substrate oxide capacitance
Eoxl Faraday/cm Permittivity constant of the gate oxide
Eox2 Faraday/cm Permittivity constant of the substrate oxide
Vs Volt Gate to source voltage
Ve Volt Source to substrate voltage
Vs Volt Drain to source voltage
T Kelvin Temperature
N, cm™! Effective density of states
Aen i cm’ Intrinsic carrier concentration
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Symbol Units Description
N . Ionized impurity concentration of donor atoms
(Np) or acceptor atoms (N,)
1 - Integral factor for the density of states
U cm’/Vsec Mobility of graphite
i Conversion factor from the mobility of graphite
Y to carbon nanotubes
S Ampere/V’ Current gain
1 Ampere Current between drain and source
R, Q Contact resistance of the carbon nanotube
R, Q Contact resistance at the source
Ry Q Contact resistance at the drain
Ry, Q Resistance between drain and source
Qs Siemens Conductance between drain and source
fo Siemens Transconductance
Loty Angstroms Thickness of the gate material
Overlap capacitance between the gate and the
Cpar Faraday source/drain
Cos Faraday Capacitance between the gate and source
Ly nm Mean free path of electrons
hQ, eV The energy of the n, scattering event
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