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The experimental observables in coherent, multiple pulse infrared spectroscopic measurements can be calculated
from the nonlinear response functions describing the nuclear dynamics of molecular and condensed phase
systems. Within classical mechanics, these nonlinear response functions can be expressed in terms of the
monodromy matrices that quantify the stability of classical trajectories. We use an ensemble of noninteracting,
anharmonic oscillators to examine the effects of the divergence in time of the classical stability matrix on the
analytic properties of the third-order response function, relevant to vibrational echo spectroscopy. The two-
pulse echo measurement is designed torephasea macroscopic variable, that is, to reverse the effects of
destructive interference among the dynamics of microscopic systems characterized by a static distribution of
energies. Within classical mechanics, this rephasing is shown to preserve the growth with time of the nonlinear
response function that is the signature of the divergence of nearby trajectories. For systems with nearly classical
nuclear motions, the vibrational echo measurement may then be interpreted as a probe of the stability of
atomic trajectories.

I. Introduction

Observables in nonlinear infrared and Raman measurements1-7

of nuclear motions may be computed from nonlinear response
functions characterizing the material system. The challenges
posed by computing nonlinear response functions for large
anharmonic systems with time-dependent quantum mechanics
has motivated the analysis of these quantities within classical
mechanics.8-17 Nonlinear response functions of a classical
mechanical system may not be calculated directly from a
conventional, equilibrium molecular dynamics simulation, be-
cause their computation requires knowledge of stability matri-
ces,8 which quantify the effects of small deviations in initial
conditions on classical trajectories. An alternative to simulating
nonlinear response functions, which obviates the need to
compute stability matrices, is to perform a nonequilibrium
molecular dynamics simulation of the material system in the
presence of an electromagnetic field and to evaluate numerically
the appropriate low-field limit.15-17 The relevance of stability
matrices to nonlinear optical measurements is intuitively clear.
Consider, for example, an anharmonic oscillator coupled to an
electric field with an electric dipole interaction. The nonlinear
response function quantifies the impulse response of the system.
Within classical mechanics, the effect of a short electric field
pulse on a dipolar oscillator is the perturbation of the momentum
of the oscillator. The nonlinear response function in classical
mechanics describes the alteration of classical trajectories by a
sequence of such momentum changes.

Classical stability matrices diverge in time, exponentially for
a chaotic system and linearly for an integrable one, representing
the large effect on a trajectory at long times of a small change
in initial conditions.18 Because classical mechanical nonlinear
response functions are expressible as averages over these
quantities, the effect of these divergences on the analytical
properties of the response functions must be ascertained.

Divergence in time of the response functions would suggest a
lack of validity of the perturbation theory in the radiation-
matter interaction that produced them.19 Leegwater and Muka-
mel20 have carried out such analysis in a numerical study of
the two-pulse vibrational echo from an ensemble of noninter-
acting quartic oscillators. The stability matrices of this integrable
system diverge linearly with time.21 For a microcanonical
ensemble, the third-order response functionR(3)(t3, t2, t1) diverges
linearly in t1 for increasingt1 at fixed t3 and t2 ) 0. However,
this divergence is removed by thermal averaging for a canonical
ensemble of oscillators. The response at each energy within the
canonical distribution is linearly divergent in time, but the
average of this dependence over a Boltzmann distribution yields
a result that does not increase at long times. This phenomenon
can be viewed as an example of dephasing: destructive
interference between dynamics of different members of an
ensemble.

The two-pulse echo experiment in magnetic resonance,
optical, or vibrational spectroscopy is designed to reverse the
effects of dephasing in a macroscopic magnetization or electric
polarization caused by static distributions of energy.22,23 This
rephasingcan be manifest inR(3)(t3, 0, t1) close to the echo
condition, t3 ) t1. The model studied by Leegwater and
Mukamel, a thermal distribution of uncoupled anharmonic
oscillators, may be viewed as displaying static spectral line
broadening.24 The focus of our work is the question of whether
the dephasing observed by Leegwater and Mukamel can be
rephased by the echo pulse sequence, resulting in a nonlinear
response functionR(3)(t, 0, t) that diverges with increasingt,
even for a canonical ensemble of oscillators. We present below
both numerical and analytical arguments that support the
existence of such a temporal divergence. Our findings suggest
that, within the domain of classical mechanics, infrared pulse
sequences can provide a sensitive probe of the stabilities of
classical trajectories, even for a system in thermodynamic
equilibrium. This classical interpretation of the vibrational echo† Part of the special issue “Hans C. Andersen Festschrift”.
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can be usefully applied to quantum systems that are near the
classical limit. The third-order response function, the vibrational
echo observable, and our model are described in section II,
numerical results are discussed in section III, analytical treat-
ments are presented in section IV, and implications of this work
are summarized in section V. A diagrammatic representation
of the classical response function, which identifies the classical
analogues of quantum mechanical dephasing and rephasing
processes, is presented in the Appendix.

II. Quantum and Classical Vibrational Echoes

The observable in a vibrational echo measurement may be
computed from the third-order optical response function
R(3)(t3, t2, t1), which is defined by25

in which E(t) denotes the electric field amplitude,P(3)(t) is the
macroscopic electric polarization, and{tj} are the elapsed times
between successive radiation-matter interactions. With the
neglect of propagation effects, the signal in an echo experiment
may be computed from the square of the appropriately phase-
matched component of the polarization.25 In a two-pulse echo
measurement, in the limit of impulsive excitation, the observable
is related to the response function with the second time set to
zero,R(3)(t3, 0, t1).25 For a radiation-matter interaction of the
electric dipole form,R(3) may be expressed as an average of
three nested commutators25

The electric dipole operator is taken to be proportional to the
coordinate operatorq̂ governing an “active” degree of freedom
that interacts with the electric field, and the coefficient of
proportionality is suppressed. Other “dark” degrees of freedom
may couple toq̂. The coordinate operator in the Heisenberg
picture is denotedq̂(t), and the angular brackets represent an
average over the appropriate density operator. The classical
mechanical expression forR(3) may be obtained from thep f
0 limit of eq 2.2, or, equivalently, from carrying out time-
dependent perturbation theory within classical mechanics8

The classical coordinate interacting with the radiation field is
denotedq(t), {‚‚‚, ‚‚‚} are Poisson brackets, and〈‚‚‚〉 denotes
an average over the classical phase space distribution. If this
distribution is taken to have the canonical form, then the classical
response function can be written as12

The momentum conjugate toq is p, the mass associated with
coordinateq is m, â ≡ 1/kBT, and the elements of the stability
matrix are defined by, for example,

The partial derivative in eq 2.5 is taken with the coordinates
and momenta of the other degrees of freedom held fixed.

We will consider the classical and quantum mechanical
response functions for a thermal ensemble of noninteracting
Morse oscillators,24 each with Hamiltonian

The quantum response function may be calculated directly from
eq 2.2 by evaluating the trace in the energy representation.26,27

Calculation of the classical response function is most conve-
niently performed using the action-angle variables for the Morse
oscillator21,27(I,θ). The Hamiltonian, coordinate, and momentum
are expressed in terms of these variables as follows

These variables are propagated according to

An action-dependent frequency,ωj (I), is defined in eq 2.12.
For the Morse oscillator, the quantum mechanical response

function takes the form

The response function is expressible as the product of a
dimensional factor, (m2ωD)-1, and a dimensionless function of
time variables scaled by the harmonic frequency,ω, and of two
temperature-dependent parameters: the classical mechanicalâD
and the quantum mechanicalâpω. The classical response
function, Rcl

(3) is thep f 0 limit of eq 2.13 and hence can be
written as a dimensionless quantity depending on time variables
only throughωt1 andωt3 and on temperature only throughâD.
In numerical calculations shown below, time variables are scaled
by ω andR(3) is shown as the quantityF ≡ m2ωDR(3).

III. Dephasing and Rephasing in a Canonical Ensemble

The dependence of the classical mechanical echo response
function,Rcl

(3)(t3, 0, t1) on t3 at fixed t1 for a thermal distribution
of noninteracting Morse oscillators is shown in Figure 1. In a
two-pulse vibrational echo measurement in the limit of impulsive
excitation,t1 corresponds to the experimentally controlled delay
time between applied laser pulses andt3 corresponds to the

Mqp(ta, tb) ≡ ∂q(ta + tb)

∂p(tb)
(2.5)

H ) p2

2m
+ D(1 - e-Rq)2 (2.6)

H ) ωI - I2ω2

4D
, I e 2D/ω (2.7)

q(I,θ) ) x 2D

mω2
ln[1 + xH(I)/D cosθ

1 - H(I)/D ] (2.8)

p(I,θ) ) - x2mD
xH(I)/D - (H(I)/D)2 sin θ

1 + xH(I)/D cosθ
(2.9)

I(t) ) I(0) (2.10)

θ(t) ) θ(0) + ωj (I)t (2.11)

ωj (I) ) ∂H
∂I

) ω(1 - Iω
2D) (2.12)

R(3)(t3, 0, t1) ) (m2ωD)-1F(ωt1,ωt3;âD,âpω) (2.13)

ω ≡ Rx2D
m

(2.14)

P(3)(t) ) ∫0

∞
dt3∫0

∞
dt2∫0

∞
dt1 R(3)(t3, t2, t1)E(t - t3) ×

E(t - t2 - t3)E(t - t1 - t2 - t3) (2.1)

R(3)(t3, t2, t1) ) ( i
p)3

〈[[[ q̂(t1 + t2 + t3), q̂(t1 + t2)], q̂(t1)],

q̂(0)]〉 (2.2)

Rcl
(3)(t3, t2, t1) ) - 〈{{{q(t1 + t2 + t3), q(t1 + t2)}, q(t1)},

q(0)}〉 (2.3)

Rcl
(3)(t3, t2, t1) ) - â

m[〈Mqp(t3, t2)Mpp(-t1, 0)〉 -

â
m

〈Mqp(t3, t2)p(-t1)p(0)〉] (2.4)
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detection time, which is typically integrated over in an actual
measurement. The calculations in Figure 1 were performed using
eq 2.4, together with the analytical solution for the dynamics
of the Morse oscillator in terms of action-angle variables24 in
eqs 2.7-2.12. In Figure 1, the temperature is given byâD )
12.8, andt1 ) 75. The dashed curve in Figure 1 shows the
contribution to the thermally averaged response function from
oscillators with a fixed energy, computed by reinterpreting the
angular brackets in eq 2.4 as a microcanonical average withE
) 0.078D. The contribution toRcl

(3)(t3, 0, t1) from oscillators
with a single energy is seen to diverge linearly witht3, reflecting
the linear divergence with time of stability matrix elements for
the Morse oscillator.13,20 The complete thermally averaged
R(3)(t3, 0, t1) is shown by the solid curve in Figure 1. The
weighted sum of divergent contributions from each energy
produces a result that does not diverge in time and displays the
temporal profile that gives the echo measurement its name,
peaked neart3 ) t1. The removal of a similar divergence int1
at fixedt3 by averaging over a thermal distribution was observed
in calculations ofR(3)(t3, 0, t1) for an ensemble of quartic
oscillators by Leegwater and Mukamel.20

Because the two-pulse echo measurement acts to rephase the
destructive interference between contributions to the polarization
from different members of an ensemble, we next examine the
dependence of the magnitude ofRcl

(3)(t3, 0, t1) at the nominal
peak of the echo signal,t1 ) t3, on the delay time.Rcl

(3)(t, 0, t)
is shown in Figure 2 for two temperatures:âD ) 25.6 (dashed
curve) andâD ) 63.9 (solid curve). Each plot shows oscillations
at a frequency near 2ω superposed on an apparent linear
divergence. Also plotted is the temperature-independent line
R(3)(t, 0, t) ) -t/2m2D, which is seen to represent this apparent
linear divergence at both temperatures. We refer to the long-
time dependence ofR(3)(t, 0, t) shown in Figure 2 as an
“apparent” divergence, because these numerical calculations
over a finite time range suggest, but do not prove, that-t/2m2D
is the asymptotict f ∞ behavior of the response function for
this model.

To investigate further the apparent long-time divergence of
Rcl

(3)(t, 0, t) in Figure 2, we compare the classical calculation
for âD ) 25.6 to a quantum mechanical calculation forâD )
25.6 andâpω ) 4.0 in Figure 3. The solid curve shows
Rcl

(3)(t, 0, t), reproduced from Figure 2, and the dashed curve
showsR(3)(t, 0, t) computed from evaluating the trace in eq 2.2
in the energy representation and truncating sums over states to
include only bound states. The quantum curve lacks the apparent

linear divergence of the classical result and is instead character-
ized by recurrences on a time scale 2π/∆, with ∆ ) pω2/2D
the anharmonic frequency difference between successive one-
quantum transitions in the Morse oscillator. For the parameters
of Figure 3, 2π/∆ ) 80. Fort , 2π/∆, the quantum and classical
response functions agree. Ifâpω is decreased from the value
of Figure 3, 2π/∆ increases, as does the range of times over
which the classical and quantum results agree. The transforma-
tion of a slow oscillation whose period increases with decreasing
p into a classical divergence in a nonlinear response function
for a different model, not characterized by a thermal distribution,
has been documented by Wu and Cao.13

The calculations shown in Figure 2 suggest that the rephasing
property of the vibrational echo preserves at finite temperature
a temperature-independent temporal divergence that originates
in the stability of individual classical trajectories. We do not
present a mathematical proof that, for a thermal ensemble of
Morse oscillators, the long-time asymptotic time dependence
of the response function isRcl

(3)(t, 0, t) f -t/(2m2D). However,
our empirical observation of this divergence is supported by
approximate, analytic treatments of the quantum and classical
mechanical response functions, which provide insight into the
physical origin of this time dependence, and which are described
in the following section. The particular simplicity of the Morse
oscillator raises the question of the generality of this finding,
even among one-dimensional anharmonic oscillators. Numerical
calculations ofRcl

(3)(t, 0, t), not shown here, for potentials of the
forms V(q) ) bq4 and V(q) ) aq2 + bq4, also show a linear
divergence, although with a temperature-dependent slope. This
result suggests that the linear divergence ofRcl

(3)(t, 0, t) is not a

Figure 1. The classical mechanical third-order response function,
Rcl

(3)(t3, 0, t1), is shown as a function oft3 for fixed t1 ) 75. The solid
curve is calculated for a canonical distribution withâD ) 12.8, and
the dashed curve shows the contribution to the thermal result for a
single energy,E ) 0.078D.

Figure 2. The classical mechanical third-order response function is
shown for a thermal ensemble of Morse oscillators at two tempera-
tures: âD ) 25.6 (dashed curve) andâD ) 63.9 (solid curve). The
solid line shows the apparent asymptotic divergence,-t/(2m2D).

Figure 3. Classical (solid curve) and quantum mechanical (dashed
curve) third-order response functions are shown forâD ) 25.6. In the
quantum case,âpω ) 4.0.
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special feature of the Morse oscillator but may be generic to
one-dimensional anharmonic oscillators and other integrable
systems. The origin of the temperature-independent slope found
for the Morse oscillator is discussed in the following section.

IV. Analytical Treatment of the Response Function

In the previous section, we presented numerical calculations
of the echo response function of an anharmonic oscillator that
showed an apparent linear divergence in time. In support of
this finding, we present here an approximate, analytical theory
of the classical mechanical third-order response function for a
Morse oscillator. We develop this theory in two different ways,
first as thep f 0 limit of a quantum mechanical treatment,
and second as a result derived wholly within classical mechanics.
Each derivation provides a distinct insight into the origin of
this temporal divergence.

The quantum mechanical approach is based on the work of
Akiyama and Loring,28 who reported an approximate, analytical
theory of the two-pulse vibrational echo for a Morse oscillator
coupled to a harmonic solvent. For the present application, we
consider this model in the absence of the solvent, in which case
the theory results from the three following approximations. The
transition moments are evaluated to lowest order inp, only
single-quantum transitions are considered, and only bound states
are included. The third-order response functionR(3)(t3, 0, t1) is
partitioned into a sum ofrephasingand nonrephasingterms.
The rephasing terms are characterized by oscillations with the
time dependenceω(t1 - t3), which vanish when the echo
condition is satisfied,t1 ) t3. These terms also contain
temperature-dependent dephasing functions denoted{Nj}, which
are decaying functions of the variablet1 - t3 and which hence
become independent of time under the echo condition. By
contrast, the nonrephasing terms contain temporal oscillations
with the time dependenceω(t3 + t1) and have temperature-
dependent decay factors of the formNj(t1 + t3), which retain
their time dependence for any positive values of the time delays
t1 and t3. These results follow from omitting the solvent
relaxation factors in eqs 30 and 34 of ref 28.

The temperature-dependent dephasing functionsNj are defined
by

The anharmonic frequency shift of the Morse oscillator
∆ ) pω2/2D has been defined in the previous section. The
quantum number associated with the highest energy bound
state nmax is given by the largest integer smaller than
ω/∆ -1/2.

For some standard models of nonlinear optics,25 such as a
truncated set ofn quantum levels with constant frequencies,
the echo observable has no classical limit, because the underly-
ing model has no classical analogue. The vibrational echo for
a classical Morse oscillator, however, is perfectly well-
defined,12,28 as shown in the previous section, and the ap-
proximate expressions in eqs 4.2 and 4.5 have a finitep f 0
limit. It should be noted that, in this limit, one approximation
that produced eqs 4.2 and 4.5 becomes exactly correct: the
neglect of higher order terms inp in evaluating transition
moments.28

Taking the p f 0 limit of Rre
(3) in eq 4.2 and ofRnr

(3) in
eq 4.5 requires the leading order dependence for smallp
of the temperature-dependent factorsNj(τ), which may be
determined exactly from eq 4.6 by converting the summations
to integrals

The expressions forR(3) in eqs 4.2 and 4.5 depend onp through
thep dependence ofNj in eq 4.6, through thep dependence of
factors such as ei∆τ - 1, and through an explicit prefactor of
p-1. Taking the p f 0 limit in eqs 4.2 and 4.5 requires
expanding terms of the form ei∆τ - 1 through orderp3 and
retaining only the leadingp dependence ofNj, shown in eq 4.8.
These limits are

Here,Nh j ) Nh ′j + iNh ′′j.
For t1 ) t3 ) t, the rephasing term in eq 4.10 becomes a

simple linear divergence

Calculation of the nonrephasing term in eq 4.11 requires
evaluation of the integral in eq 4.9. Because our focus is the
nonlinear response of a bound degree of freedom, we restrict
our attention toâD . 1, as in Figures 1-3. In this case, the

R(3)(t3, 0, t1) ) Rre
(3)(t3, 0, t1) + Rnr

(3)(t3, 0, t1) (4.1)

Rre
(3)(t3, 0, t1) ) (2m2ω2p)-1 Im[eiω(t3-t1)Xre(t1, t3) +

e-iω(t3-t1)Yre(t1, t3)] (4.2)

Xre ) [N2
*(t3 - t1) + N1

*(t3 - t1)][e
i∆t1 - 1] + [N2

*(t3 - t1) +

3N1
*(t3 - t1) + 2N0

*(t3 - t1)][e
i∆(t1-2t3) - 1] (4.3)

Yre ) 2[N2(t3 - t1) + 2N1(t3 - t1) +

N0(t3 - t1)][e
i∆(t3-t1) - 1] - 4N2(t3 - t1) sin2(∆t3

2 ) +

2iN1(t3 - t1) sin(∆t3) (4.4)

Rnr
(3)(t3, 0, t1) ) 2Rre

(3)(t3, 0, -t1) (4.5)

Nj(τ) ) ∑
n)0

nmax

nj ein∆τ e-âεn/[∑
n)0

nmax

e- âεn] (4.6)

εn ) pω(n + 1/2) - p(∆/2)(n + 1/2)
2 (4.7)

lim
pf0

Nj(τ) ) (âpω)-jNh j(τ) (4.8)

Nh j(τ) )
∫0

2âD
dy yj e-y+y2/(4âD)+iyωτ/(2âD)

∫0

2âD
dy e-y+y2/(4âD)

(4.9)

lim
pf0

Rre
(3)(t3, 0, t1) ) -

t3

2m2D{cosω (t3 - t1)[Nh ′0(t3 - t1) -

(ω(2t3 - t1)

2Dâ )Nh ′′1(t3 - t1) + (ω2t3(t1 - t3)

8D2â2 )Nh ′2(t3 - t1)] +

sin ω (t3 - t1)[Nh ′′0(t3 - t1) + (ω(2t3 - t1)

2Dâ )Nh ′1(t3 - t1) +

(ω2t3(t1 - t3)

8D2â2 )Nh ′′2(t3 - t1)]} (4.10)

lim
pf0

Rnr
(3)(t3, 0, t1) ) 2lim

pf0
Rre

(3)(t3, 0, - t1) (4.11)

Rre
(3)(t, 0, t) ) - t

2m2D
(4.12)
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integral in eq 4.9 can be approximated by replacing the thermal
distribution with its harmonic limit.

Substitution of these results into eq 4.11 yields

In contrast to the rephasing term in eq 4.12, the nonrephasing
contribution toR(3)(t, 0, t) decays to zero, ast-1. To assess the
validity of these approximations, we compare in Figure 4 the
classicalR(3)(t, 0, t) for âD ) 25.6 from Figure 2, the dashed
curve, to the prediction of eqs 4.1, 4.12, and 4.16, shown by
the solid curve. Except at very short time, as shown in the inset,
the approximate result provides a quantitatively accurate
representation of the classical response function.

The analytical results in eqs 4.10 and 4.11 provide some
insight into the origin of the linear divergence ofRcl

(3)(t, 0, t)
shown in Figures 2-4. As shown in eq 4.12, the rephasing term
at t1 ) t3 ) t becomes exactly equal to the apparent asymptotic
divergence ofRcl

(3) in Figure 2,-t/(2m2D). The nonrephasing
term oscillates at 2ω and decays asymptotically to zero ast-1.
Thus, although we do not prove thatRcl

(3) diverges linearly in
time, the quantitatively accurate theory of eqs 4.12 and 4.16
displays this feature. The origin of this divergence may be
understood within quantum mechanics from consideration of
the quantum version of the theory in eqs 4.2 and 4.5. The

quantum vibrational echo from an anharmonic oscillator has
been described in the conventional formalism of nonlinear optics
in terms of the two-sided Feynman diagrams that depict terms
in the radiation-matter perturbation theory.3,25 Diagrams that
contribute to rephasing processes are characterized by a quantum
coherence with time dependence exp(iω′t1) followed by a
coherence with time dependence exp(iω′′t3), with ω′ and ω′′
signed frequencies of single-quantum transitions with opposite
signs. The product of these factors yields an oscillation witht1
- t3 at an anharmonic frequency that vanishes asp f 0. For
the Morse oscillator, this frequency is∆ ) pω2/2D. Individual
double-sided Feynman diagrams are not useful in a discussion
of the classicalp f 0 limit, because their values diverge in
this limit, and the classical limit is obtained by combining
contributions from different diagrams. The connection between
quantum rephasing and the classical time divergence is most
easily appreciated by considering the zero-temperature limit of
the rephasing term in eq 4.2, which describes a three-level
system3 at T ) 0.

At the echo condition,t3 ) t1 ) t, this expression becomes

Rephasing has removed any time dependence involving the
harmonic frequencyω, and the echo signal is predicted3 to
oscillate at the anharmonic frequency∆. Although this expres-
sion describes a quantum system atT ) 0, it has a finitep f
0 limit, giving precisely the classical mechanical divergence of
eq 4.12. A quantum oscillation at an anharmonic frequency is
transformed into a linear divergence in classical mechanics.13

The classical mechanical results of eqs 4.12 and 4.16 were
determined as thep f 0 limit of a quantum mechanical
expression. Further insight into the classical response function
may be obtained by deriving the identical result from a wholly
classical mechanical treatment, which is based on the classical
analogues of the approximations made in ref 28. We define a
model classical oscillator by making a canonical transformation
from the Morse action-angle variables of eqs 2.7-2.12 to a pair
of “harmonic oscillator” variables

where the angle variableθ evolves under anharmonic Morse
oscillator time evolution according to eq 2.11,θ(t) ) θ(0) +
ωj (I)t, with I constant, and the action-dependent frequency
defined in eq 2.12. This model oscillator is assumed to couple
to the electromagnetic field through the “coordinate”qj, rather
than q, so that the classical response function takes a form
analogous but not identical to eq 2.3.

Equations 4.20 and 4.21 define a model anharmonic oscillator
interacting with radiation, which is not identical to the Morse
oscillator model of section II. The effective coordinate and

Figure 4. The classical mechanical third-order response function is
shown forâD ) 25.6. The solid curve is the approximation of eqs
4.12 and 4.16, and the dashed curve, nearly indistinguishable on the
scale of the larger plot, is computed numerically from eq 2.4. Short-
time behavior is shown in the inset.

N0(τ) ≈ 1

1 - i
ωτ

2Dâ

(4.13)

N1(τ) ≈ 1

(1 - i
ωτ

2Dâ)2
(4.14)

N2(τ) ≈ 2

(1 - i
ωτ

2Dâ)3
(4.15)

Rnr
(3)(t, 0, t) ) - t

2m2D {cos 2ωt [2 - 3z2 - z4

(1 + z2)3 ] +

sin 2ωt [z(5 + z2)

(1 + z2)3]} (4.16)

z ) ωt
Dâ

(4.17)

lim
Tf0

Rre
(3)(t3, 0, t1) ) 1

m2ω2p
{sin((ω - ∆)(t3 - t1)) ×

[cos∆t3 - 1] - cos((ω - ∆)(t3 - t1))[sin ∆t3]} (4.18)

Rre
(3)(t, 0, t) ) - sin ∆t

m2ω2p
(4.19)

qj(I,θ) ) x 2I
mω

cosθ (4.20a)

pj(I,θ) ) - x2Imω sin θ
(4.20b)

Rh (3)(t3, t2, t1) ) - 〈{{{qj(t3 + t2 + t1), qj(t2 + t1)}, qj(t1)},

qj(0)}〉 (4.21)
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momentum defined in eqs 4.20 may also be viewed as approx-
imations to the Morse oscillator coordinate and momentum,
obtained by expanding the exact relationships in eqs 2.8 and
2.9 to lowest order inH/D. The Fourier representation of the
effective coordinateqj(I,θ) ) ∑k qjk(I)eikθ has only two terms,
k ) (1, just as for a harmonic oscillator. This Fourier decom-
position of qj is, by standard correspondence principle argu-
ments,21 just the classical analogue of the restriction to one-
quantum transitions (∆n ) (1) in the Akiyama-Loring treat-
ment.28 The nonlinearity of the oscillator is nevertheless mani-
fested through the action dependence ofωj (I), the classical ana-
logue of the anharmonic energy spacings preserved in the treat-
ment of ref 28.

Using the expressions in eqs 4.20, it is possible to derive an
explicit form for the nonlinear responseRh (3)(t, 0, t). As the
Fourier representation of the coordinateqj(I,θ;t) consists of two
terms

evaluation of the nested Poisson brackets in eq 4.21 gives rise
to a Fourier series with terms havingk ) 0, (2, and(4. Those
terms withk * 0 average to zero when integrated over the angle
θ, so that only thek ) 0 terms contribute toRh (3). For t1 ) t, t2
) 0, andt3 ) t, thek ) 0 terms are found to be

The time-dependent phase factors in the nested Poisson bracket
combine to give two types of terms, which, following the
analysis of eqs 4.2 and 4.5, we designate as rephasing and
nonrephasing, respectively. The rephasing term in eq 4.23 is
-t/2m2D and has no oscillatoryt dependence. The remaining
terms are the nonrephasing contribution and exhibit oscillatory
dependence in addition to power law growth int. A diagram-
matic representation of the classical response function in eq 4.21,
which permits the ready identification of rephasing and non-
rephasing contributions, is presented in the Appendix.

To computeRh (3)(t, 0, t), thek ) 0 terms in eq 4.23 must be
averaged over the action distribution function,F(I). As the
rephasing term is independent of action, its averaged value is
-t/2m2D for an arbitrary normalized action distribution function.
In particular, the rephasing term is independent of temperature.
To evaluate the nonrephasing contributions to the response
function, we employ the same approximations used in eqs 4.13-
4.15 to obtain thep f 0 limit of the Akiyama-Loring theory;
the Morse canonical distribution is replaced by the harmonic
oscillator distributionFHO(I) ) ωâe-ωâI, and the upper limit in
the integration over actionI is set to infinity. The classical non-
linear response functionRh (3)(t, 0, t) is then found to beidentical
with the result obtained as thep f 0 limit of the Akiyama-
Loring theory, namely, it is the sum of expressions 4.12 and
4.16, which is shown by the solid curve in Figure 4.

Although the nonrephasing terms in eq 4.23 diverge as powers
of t for fixed values of the actionI (energyH(I)), averaging
over a distribution of frequenciesωj (I) leads to oscillatory
contributions proportional to ratios of polynomials int that decay
to zero ast f ∞. As noted in section III, the rephasing
contribution linear int has its origin in the behavior of two-

time Poisson brackets or stability matrix elements∂qj(ta + tb)/
∂pj(tb); such linearity is generic for integrable systems18 and can
be understood in terms of the relative shearing motion of nearby
trajectories in phase space. The manipulations that produced
eq 4.23 give insight into the temperature independence of
Rre

(3)(t, 0, t) for the Morse oscillator. This is a consequence of
the linear dependence ofωj (I) on I in eq 2.12. For the general
case of a one-dimensional anharmonic oscillator,∂ωj /∂I is not
constant, and the analogue of the first term in eq 4.23 will
depend on action, thereby producing a temperature-dependent
factor upon thermal averaging. As noted in the previous section,
we have determined that the apparent linear divergence in
Rcl

(3)(t, 0, t) is temperature dependent for a quartic oscillator.
The two analytic treatments of the nonlinear response of a Morse
oscillator presented here support the existence of the apparent
linear divergence manifested in the numerical calculations of
Figures 2 and 4.

V. Conclusions

We have made three arguments in support of the proposition
that the classical mechanical nonlinear response function for a
thermal ensemble of anharmonic oscillators diverges in time.
We have demonstrated this to be the case with numerical
calculations over a finite time interval, and we have presented
two derivations, from quantum and classical mechanics, of an
approximate but quantitatively accurate theory that displays this
feature. This finding brings together two notions that may be
found in the literature. The first is the proposal by Leegwater
and Mukamel20 that the divergences that characterize classical
mechanical nonlinear response functions for a microcanonical
ensemble are destroyed by the dephasing associated with a
thermal average in a canonical ensemble. The second is the
textbook description22,23 of echo spectroscopy as reversing the
effects of inhomogeneous dephasing from a static distribution
of energies. We propose that this rephasing property of the
vibrational echo produces a divergence that is the signature of
stabilities of classical trajectories.

What are the implications for molecules in the laboratory of
this result for a model of noninteracting anharmonic oscillators?
First, it must be recalled that the laboratory is quantum
mechanical and that, at long enough time, apparent classical
divergences turn into quantum oscillations, as in Figure 3.
Second, our model has not included dissipation, which produces
dephasing that is not rephased by the echo pulse sequence.
However, the existence of a temporally diverging response
function for the classical mechanical model considered here
suggests that the time-dependent perturbation theory that
produced eq 2.1 is not valid at long times for this model, because
of the nonlinearity of classical mechanics. Such an interpretation
is not without precedent. In his article entitled “The Case against
Linear Response Theory,” van Kampen has stated of nonlinear
response theory that “this extension of linear response theory
is even more manifestly wrong.”19 Fortunately, the practical
utility of the results yielded by nonlinear response theory for
dissipative systems with many degrees of freedom has been
established empirically. Our finding has implications for finite-
field calculations of the classical mechanical nonlinear re-
sponse,15-17 in which the complexities of relations containing
stability matrices like eq 2.4 are avoided by carrying out
nonequilibrium simulations in the presence of the driving field.
For models of the type discussed here, the divergence ofRcl

(3)

suggests that the regime of validity of third-order response
theory will become limited to weaker and weaker fields as time

qj(I, θ; t) ) x I
2mω

[e+iθ e+iωj (I)t + e-iθ e-iωj (I)t] (4.22)

- t

2m2D[1 + 2 cos(2ωj (I)t) + t2I2ω4

2D2
cos(2ωj (I)t) +

3Itω2

D
sin(2ωj (I)t)] (4.23)
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increases. The practical implications of such a scenario remain
to be explored in comparisons between finite-field and nonlinear
response calculations in classical mechanics.
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Appendix A: Diagrammatic Formulation of the Classical
Response Function

In the calculation of the nonlinear response function for the
classical model oscillator of eqs 4.20 and 4.21, the rephasing
and nonrephasing contributions could be separately identified,
as shown in eq 4.23. In the corresponding quantum mechanical
calculation, double-sided Feynman diagrams3,25provide a useful
way to identify rephasing and nonrephasing contributions to the
response function. As noted previously, individual quantum
mechanical double-sided Feynman diagrams diverge asp f 0
and hence have no direct classical mechanical analogues.
However, the formalism of eqs 4.20 and 4.21 suggests a
diagrammatic formulation of a classical response function, which
retains the complex exponential functions characterizing coher-
ence dynamics in quantum mechanics.

Because double-sided Feynman diagrams depict perturba-
tions of the density matrix, we first rewrite the classical response
function in eq 4.21 in an equivalent form in which Poisson
brackets act directly on the classical phase space distribu-
tion, F.

For a single degree of freedom, the phase space volume element
dΓ ) dp dq can be written through a canonical transformation
in terms of the action-angle variables of eqs 2.8-2.12 as dΓ )
dI dθ. The effective coordinate in eq 4.22 may be written as

Substitution of this Fourier series forqj into the four occurrences
of that quantity in eq A1 yields 16 terms. Each occurrence of
qv carries a factor exp(iθ), and eachqV contributes exp(-iθ).
Terms in the integrand in eq A1 that carry a factor exp(ikθ)
with k * 0 will average to zero, because the distribution is
independent ofθ. Therefore, out of the 16 terms, only the 6
terms involving two factors each ofqv andqV will survive the
angle average. These terms can be represented with the six
diagrams shown in Figure 5. Each diagram is read from left to
right, with successive line segments representing the effects of
qj(0), qj(t1), qj(t1 + t2), andqj(t1 + t2 + t3). Thus, the three leftmost
segments represent Poisson brackets, and the rightmost segment
indicates multiplication. Segments pointing up, as scanned from
left to right, indicateqv, and segments pointing down represent
qV. For example, diagram I in Figure 5 represents the term

Each graph must begin and end on a (hypothetical) horizontal

line connecting the endpoints. Graphs related by reflection about
this horizontal line have values that are complex conjugates,
for example,I ) II*. Each graph, att2 ) 0, represents either a
rephasing or nonrephasing contribution to the vibrational echo.

From eq A3, eachqv(t) carries a phase factor exp(iωt), while
qV(t) carries exp(-iωt). The total phase factor associated with
each diagram is then easily determined. Diagram I in Figure 5
has the phase factor exp(iω(t3 - t1)) and is by definition a
rephasing contribution. Diagram II has a value that is the
complex conjugate of that of I and has phase factor exp(-iω(t3
- t1)). Diagrams III-VI represent nonrephasing contributions,
with phase factors exp((iω(t3 + t1)). The value of diagram I is

The dephasing functionsNh j are defined in eq 4.9. The values
of the other five diagrams can be related to that of I according
to

Summing the graphs yields

Substitution of the value ofI in eq A5 into eqs A7 gives the
expressions in eqs 4.10 and 4.11. Although the specific results
in eqs A5-A7 were derived for the particular case of the Morse
oscillator, this diagrammatic representation of the third-order
response function is applicable to general potentials, within the
approximation of the coordinate by the quantityqj in eq 4.20.
The diagrammatic formulation in Figure 5 permits the applica-

Figure 5. Diagrammatic representation of a classical mechanical
nonlinear response function.

I(t3, 0, t1) ) ( -t3

4m2D) eiω(t3-t1)[Nh 0
*(t3 - t1) -

i
ω(2t3 - t1)

2âD
Nh 1

*(t3 - t1) -
ω2t3(t3 - t1)

8â2D2
Nh 2

*(t3 - t1)] (A5)

II (t3, 0, t1) ) I*( t3, 0, t1)

III (t3, 0, t1) ) I*( t3, 0, -t1)

IV(t3, 0, t1) ) I(t3, 0, -t1) (A6)

V(t3, 0, t1) ) I*( t3, 0, -t1)

VI(t3, 0, t1) ) I(t3, 0, -t1)

Rre(t3, 0, t1) ) 2ReI(t3, 0, t1)

Rnr(t3, 0, t1) ) 2Rre(t3, 0, -t1) (A7)

Rh (3)(t3, t2, t1) ) -∫ dΓ [qj(t1 + t2 + t3){qj(t1 + t2), {qj(t1),

{qj(0),F}}}] (A1)

qj(I, θ; t) ) qv + qV (A2)

qv ) x I
2mω

eiθ eiωt e-iω2It/2D, qV ) qv
* (A3)

I ) -∫ dΓ [qv(t1 + t2 + t3){qV(t1 + t2), {qV(t1), {qv(0), F}}}]

(A4)
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tion of the quantum mechanical concepts “rephasing” and
“nonrephasing” in classical mechanics.

References and Notes

(1) Mukamel, S.; Piryatinski, A.; Chernyak, V.Acc. Chem. Res.1999,
32, 145-154.

(2) Fayer, M. D.Annu. ReV. Phys. Chem. 2001, 52, 315-356.
(3) Hamm, P.; Lim, M.; Hochstrasser, R. M.Phys. ReV. Lett. 1998,

81, 5326-5329.
(4) Wright, J. C.Int. ReV. Phys. Chem. 2002, 21, 185-255.
(5) Golonzka, O.; Khalil, M.; Demirdoven, N.; Tokmakoff, A.J. Chem.

Phys.2001, 115, 10814-10828.
(6) Kaufman, L. J.; Heo, J. Y.; Ziegler, L. D.; Fleming, G. R.Phys.

ReV. Lett. 2002, 88, 207402.
(7) Piryatinski, A.; Skinner, J. L.J. Phys. Chem. B. 2002, 106, 8055-

8063.
(8) Mukamel, S.; Khidekel, V.; Chernyak, V.Phys. ReV. E 1996, 53,

R1-R4.
(9) Keyes, T.; Fourkas, J. T.J. Chem. Phys. 2000, 112, 287-293.

(10) Williams, R. B.; Loring, R. F.J. Chem. Phys. 2000, 113, 1932-
1941.

(11) Williams, R. B.; Loring, R. F.J. Chem. Phys. 2000, 112, 3104-
3105.

(12) Williams, R. B.; Loring, R. F.Chem. Phys. 2001, 266, 167-176.
(13) Wu, J.; Cao, J.J. Chem. Phys. 2001, 115, 5381-5391.
(14) Ma, A.; Stratt, R. M.J. Chem. Phys. 2002, 116, 4602-4971.
(15) Dellago, C.; Mukamel, S.Phys. ReV. E 2003, 67, 035205.
(16) Saito, S.; Ohmine, I.Phys. ReV. Lett. 2002, 88, 207401.
(17) Saito, S.; Ohmine, I.J. Chem. Phys.2003, 119, 9073-9087.
(18) Lichtenberg, A. J.; Lieberman, M. A.Regular and Chaotic

Dynamics, 2nd ed.; Springer-Verlag: New York, 1992.
(19) van Kampen, N. G.Phys. NorV. 1971, 5, 279-284.
(20) Leegwater, J. A.; Mukamel, S.J. Chem. Phys. 1995, 102, 2365-

2371.
(21) Child, M. S.Semiclassical Mechanics with Molecular Applications;

Oxford University Press: New York, 1991.
(22) Steinfeld, J. I.Molecules and Radiation: an Introduction to Modern

Molecular Spectroscopy; MIT Press: Cambridge, MA, 1985.
(23) Fleming, G. R.Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 15161-

15162.
(24) Noid, W. G.; Ezra, G. S.; Loring, R. F.J. Chem. Phys. 2003, 119,

1003-1020.
(25) Mukamel, S.Principles of Nonlinear Optical Spectroscopy; Oxford

University Press: New York, 1995.
(26) Sage, M.Chem. Phys. 1978, 35, 375-380.
(27) Shirts, R. B.J. Phys. Chem.1987, 91, 2258-2267.
(28) Akiyama, R.; Loring, R. F.J. Chem. Phys. 2002, 116, 4655-4664.

Vibrational Echoes J. Phys. Chem. B, Vol. 108, No. 21, 20046543


