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The experimental observables in coherent, multiple pulse infrared spectroscopic measurements can be calculated
from the nonlinear response functions describing the nuclear dynamics of molecular and condensed phase
systems. Within classical mechanics, these nonlinear response functions can be expressed in terms of the
monodromy matrices that quantify the stability of classical trajectories. We use an ensemble of noninteracting,
anharmonic oscillators to examine the effects of the divergence in time of the classical stability matrix on the
analytic properties of the third-order response function, relevant to vibrational echo spectroscopy. The two-
pulse echo measurement is designedephasea macroscopic variable, that is, to reverse the effects of
destructive interference among the dynamics of microscopic systems characterized by a static distribution of
energies. Within classical mechanics, this rephasing is shown to preserve the growth with time of the nonlinear
response function that is the signature of the divergence of nearby trajectories. For systems with nearly classical
nuclear motions, the vibrational echo measurement may then be interpreted as a probe of the stability of
atomic trajectories.

I. Introduction Divergence in time of the response functions would suggest a
lack of validity of the perturbation theory in the radiation
matter interaction that produced thébl.eegwater and Muka-
meP° have carried out such analysis in a numerical study of

Observables in nonlinear infrared and Raman measurements
of nuclear motions may be computed from nonlinear response

functions characterizing the material system. The challengesthe two-pulse vibrational echo from an ensemble of noninter-

posed by computing nonlinear response functions for large _ . : . o . L
anharmonic systems with time-dependent quantum mechanicsacnng quartic oscillators. The stability matrices of this integrable

has motivated the analysis of these quantities within classical system dlverge_ linearly with timé. For a mlcroca_monlcal
mechanic$:17 Nonlinear response functions of a classical ensemble, the third-order response funcBi(ts, t2, tr) diverges
mechanical system may not be calculated directly from a linearly in ty for increasingt; at fixedts andt; = 0. However,
conventional, equilibrium molecular dynamics simulation, be- this divergence IS removed by thermal averaging for a ca_no_nlcal
cause their computation requires knowledge of stability matri- ensemble Of. os.cnlaltors.. The response at each energy within the
ces? which quantify the effects of small deviations in initial canonical d|s_tr|but|0n is linearly divergent in .tlm.e, PUt the
conditions on classical trajectories. An alternative to simulating average of this dependence overa Boltz_mann d|s_tr|but|on yields
nonlinear response functions, which obviates the need toaresult th‘f"t toes not increase at long times. Th's phenomenon
compute stability matrices, is to perform a nonequilibrium can fbe V'ewbed as ar(; example fog_f(?ephasmg. bdestru]f:nve
molecular dynamics simulation of the material system in the Interference between dynamics of different members of an

presence of an electromagnetic field and to evaluate numerically EnSemble.
the appropriate low-field limit5-17 The relevance of stability The two-pulse echo experiment in magnetic resonance,
matrices to nonlinear optical measurements is intuitively clear. optical, or vibrational spectroscopy is designed to reverse the
Consider, for example, an anharmonic oscillator coupled to an effects of dephasing in a macroscopic magnetization or electric
electric field with an electric dipole interaction. The nonlinear polarization caused by static distributions of enet®? This
response function quantifies the impulse response of the systemrephasingcan be manifest ifR®)(ts, 0, t1) close to the echo
Within classical mechanics, the effect of a short electric field condition, t3 = t;. The model studied by Leegwater and
pulse on a dipolar oscillator is the perturbation of the momentum Mukamel, a thermal distribution of uncoupled anharmonic
of the oscillator. The nonlinear response function in classical oscillators, may be viewed as displaying static spectral line
mechanics describes the alteration of classical trajectories by abroadening? The focus of our work is the question of whether
sequence of such momentum changes. the dephasing observed by Leegwater and Mukamel can be
Classical stability matrices diverge in time, exponentially for rephased by the echo pulse sequence, resulting in a nonlinear
a chaotic system and linearly for an integrable one, representingresponse functioiR®)t, 0, t) that diverges with increasing
the large effect on a trajectory at long times of a small change even for a canonical ensemble of oscillators. We present below
in initial conditions!® Because classical mechanical nonlinear both numerical and analytical arguments that support the
response functions are expressible as averages over thesexistence of such a temporal divergence. Our findings suggest
quantities, the effect of these divergences on the analytical that, within the domain of classical mechanics, infrared pulse
properties of the response functions must be ascertained.sequences can provide a sensitive probe of the stabilities of
classical trajectories, even for a system in thermodynamic
T Part of the special issue “Hans C. Andersen Festschrift”. equilibrium. This classical interpretation of the vibrational echo
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can be usefully applied to quantum systems that are near the aq(t, + t,)
classical limit. The third-order response function, the vibrational M qp(taa ty) = —ap(t )
b

echo observable, and our model are described in section I,
The partial derivative in eq 2.5 is taken with the coordinates

numerical results are discussed in section lll, analytical treat-
ments are presented in section 1V, and implications of this work and momenta of the other degrees of freedom held fixed.
We will consider the classical and quantum mechanical

are summarized in section V. A diagrammatic representation
of the classical response function, which identifies the classical response functions for a thermal ensemble of noninteracting
Yorse oscillatorg? each with Hamiltonian

(2.5)

analogues of quantum mechanical dephasing and rephasin
processes, is presented in the Appendix.

2
Il. Quantum and Classical Vibrational Echoes H= %n + D1 — ef‘m)2 (2.6)

The observable in a vibrational echo measurement may be

computed from the third-order optical response function The quantum response function may be calculated directly from
RO(t3, ty, t1), Which is defined b$p eq 2.2 by evaluating the trace in the energy represent#itin.

Calculation of the classical response function is most conve-
niently performed using the action-angle variables for the Morse

Gty = [ « « (3) _
P = ﬁ) dt3fo dt2fo dty R¥(t, o LE( — ) x oscillator-27(1,0). The Hamiltonian, coordinate, and momentum
E(t—t, —t)E(t—t, —t,—t) (2.1) are expressed in terms of these variables as follows
2 2
in which E(t) denotes the electric field amplitude@(t) is the H=owl— |4—‘|; | < 2D/w (2.7)

macroscopic electric polarization, afigh are the elapsed times

between successive radiatiomatter interactions. With the
1+ +/H(1)/D cosb

neglect of propagation effects, the signal in an echo experiment q(1,0) = 2D | (2.8)
may be computed from the square of the appropriately phase- ’ 2 1—H()/D '
matched component of the polarizati®rnn a two-pulse echo
measurement, in the limit of impulsive excitation, the observable H(1)/D — (H(1)/D)? sin
is related to the response function with the second time set to p(1,0) = — «/2me/ ) (HM/D) (2.9)
zero,R(t3, 0, t1).25 For a radiatior-matter interaction of the 1+ 4/H(1)/D cos6
electric dipole form,R® may be expressed as an average of H bl ted ding t
three nested commutaté?s ese variables are propagated according to

- I(t) = 1(0) (2.10)

(3) = l O A A
R (t3' t2' tl) (h) [ﬂ[[ q(tl + t2 + tS)' q(tl + tZ)]' q(tl)]! e(t) — 0(0) + a)(l)t (211)
a(0)]0(2.2)
a(1) =w=w(1—'—‘“) 2.12)

The electric dipole operator is taken to be proportional to the ol 2D

coordinate operatdj governing an “active” degree of freedom An action-dependent frequenay(l), is defined in eq 2.12.

that interacts with the electric field, and the coefficient of For the Morse oscillator, the quantum mechanical response
proportionality is suppressed. Other “dark” degrees of freedom function takes the form ’

may couple tof. The coordinate operator in the Heisenberg

picture is denoted(t), and the angular brackets represent an Rt 0 t.) = (MPwD) F(wt. wt..8D.4h 213
average over the appropriate density operator. The classical (3, 0,t) = (MwD) "F(wt, 05D fhe) (2.13)
mechanical expression &%) may be obtained from thke — o)

0 limit of eq 2.2, or, equivalently, from carrying out time- w=0o,/= (2.14)
dependent perturbation theory within classical mech&nics m

The response function is expressible as the product of a
R(C?)(t3, t,, t,) = — Q{{at, + t, + t3), q(t; + )}, a(t)}, dimensional factor,n?wD)~1, and a dimensionless function of
q(0)} 0(2.3) time variables scaled by the harmonic frequengyand of two
temperature-dependent parameters: the classical mechaical

The classical coordinate interacting with the radiation field is and the qg)gntum mechanicgfiw. The classical response
denotedq(t), {+-+, --*} are Poisson brackets, afti-Odenotes fur_1ct|on, R(CI is theh — 0 limit of_ eq 2.13 a_nd hen_ce can_be
an average over the classical phase space distribution. If thiswritten as a dimensionless quantity depending on time variables

distribution is taken to have the canonical form, then the classical only throughwt; andwts and on temperature only througi.
response function can be writtentas In numerical calculations shown below, time variables are scaled
by w andR® is shown as the quantity = mPwDR®),

R, t, 1)) = — % M gpts, )M p(—ty, 0)— lll. Dephasing and Rephasing in a Canonical Ensemble

The dependence of the classical mechanical echo response
Lo o6, (-] @9 P P

function, R(j)(t3, 0, t1) ontz at fixedt; for a thermal distribution
of noninteracting Morse oscillators is shown in Figure 1. In a
The momentum conjugate wpis p, the mass associated with  two-pulse vibrational echo measurement in the limit of impulsive
coordinateq is m, f = 1/kgT, and the elements of the stability  excitation,t; corresponds to the experimentally controlled delay
matrix are defined by, for example, time between applied laser pulses agctorresponds to the
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Figure 1. The classical mechanical third-order response function,

R®)(ts, 0, 1), is shown as a function df for fixed t; = 75. The solid
curve is calculated for a canonical distribution wb = 12.8, and

the dashed curve shows the contribution to the thermal result for a

single energyE = 0.07®.

detection time, which is typically integrated over in an actual

measurement. The calculations in Figure 1 were performed using
eq 2.4, together with the analytical solution for the dynamics

of the Morse oscillator in terms of action-angle variabtén
egs 2.72.12. In Figure 1, the temperature is given iy =
12.8, andt; = 75. The dashed curve in Figure 1 shows the

contribution to the thermally averaged response function from
oscillators with a fixed energy, computed by reinterpreting the

angular brackets in eq 2.4 as a microcanonical averageBbwith
= 0.078D. The contribution toR(j)(tg, 0, t;) from oscillators
with a single energy is seen to diverge linearly witreflecting
the linear divergence with time of stability matrix elements for
the Morse oscillatot32° The complete thermally averaged
RA)(ts, 0, t3) is shown by the solid curve in Figure 1. The
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Figure 2. The classical mechanical third-order response function is
shown for a thermal ensemble of Morse oscillators at two tempera-
tures: D = 25.6 (dashed curve) amD = 63.9 (solid curve). The
solid line shows the apparent asymptotic divergere#(2n¥D).
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Figure 3. Classical (solid curve) and quantum mechanical (dashed
curve) third-order response functions are showngdr= 25.6. In the

weighted sum of divergent contributions from each energy duantum caseffiw = 4.0.

produces a result that does not diverge in time and displays thelinear divergence of the classical result and is instead character-
temporal profile that gives the echo measurement its name,ized by recurrences on a time scate/®, with A = hw?/2D

peaked neat; = t;. The removal of a similar divergence in

at fixedts by averaging over a thermal distribution was observed
in calculations ofR®)(ts, 0, t;) for an ensemble of quartic
oscillators by Leegwater and Mukantél.

the anharmonic frequency difference between successive one-
guantum transitions in the Morse oscillator. For the parameters
of Figure 3, 2r/A = 80. Fort < 271/A, the quantum and classical
response functions agree.fw is decreased from the value

Because the two-pulse echo measurement acts to rephase thef Figure 3, 27/A increases, as does the range of times over
destructive interference between contributions to the polarization which the classical and quantum results agree. The transforma-

from different members of an ensemble, we next examine the tion of a slow oscillation whose period increases with decreasing

dependence of the magnitude Bf)(ts, 0, t;) at the nominal
peak of the echo signat, = t3, on the delay timeR,f)(t, 0,1

is shown in Figure 2 for two temperature8D = 25.6 (dashed
curve) angsD = 63.9 (solid curve). Each plot shows oscillations

f into a classical divergence in a nonlinear response function
for a different model, not characterized by a thermal distribution,
has been documented by Wu and Cao.

The calculations shown in Figure 2 suggest that the rephasing

at a frequency neara? superposed on an apparent linear property of the vibrational echo preserves at finite temperature
divergence. Also plotted is the temperature-independent line @ temperature-independent temporal divergence that originates
RG)(t, 0,t) = —t/2mPD, which is seen to represent this apparent in the stability of individual classical trajectories. We do not

linear divergence at both temperatures. We refer to the long- present a mathematical proof that, for a thermal ensemble of

time dependence oRE)Xt, 0, t) shown in Figure 2 as an

Morse oscillators, the long-time asymptotic time dependence

“apparent” divergence, because these numerical calculationsof the response function Bﬁf)(t, 0,t) — —t/(2m?D). However,

over a finite time range suggest, but do not prove, th#2n?D
is the asymptotid¢ — « behavior of the response function for
this model.

our empirical observation of this divergence is supported by
approximate, analytic treatments of the quantum and classical
mechanical response functions, which provide insight into the

To investigate further the apparent long-time divergence of physical origin of this time dependence, and which are described

Rff)(t, 0, t) in Figure 2, we compare the classical calculation
for D = 25.6 to a quantum mechanical calculation @ =
25.6 andphw = 4.0 in Figure 3. The solid curve shows
REt, 0, 1), reproduced from Figure 2, and the dashed curve

in the following section. The particular simplicity of the Morse
oscillator raises the question of the generality of this finding,
even among one-dimensional anharmonic oscillators. Numerical
calculations oREXt, 0, 1), not shown here, for potentials of the

showsRA)(t, 0,t) computed from evaluating the trace in eq 2.2 forms V(g) = bg' andV(q) = a¢? + bef', also show a linear
in the energy representation and truncating sums over states tdlivergence, although with a temperature-dependent slope. This
include only bound states. The quantum curve lacks the apparentesult suggests that the linear divergencRgS)Kt, 0,t) is not a
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special feature of the Morse oscillator but may be generic to The anharmonic frequency shift of the Morse oscillator
one-dimensional anharmonic oscillators and other integrable A = Aw?%2D has been defined in the previous section. The
systems. The origin of the temperature-independent slope foundquantum number associated with the highest energy bound
for the Morse oscillator is discussed in the following section. state nmax iS given by the largest integer smaller than
a)/A —1/2.

For some standard models of nonlinear optficsuch as a

In the previous section, we presented numerical calculations truncated set ofi quantum levels with constant frequencies,
of the echo response function of an anharmonic oscillator that the echo observable has no classical limit, because the underly-
showed an apparent linear divergence in time. In support of ing model has no classical analogue. The vibrational echo for
this finding, we present here an approximate, analytical theory a classical Morse oscillator, however, is perfectly well-
of the classical mechanical third-order response function for a defined!?22 as shown in the previous section, and the ap-
Morse oscillator. We develop this theory in two different ways, proximate expressions in egs 4.2 and 4.5 have a finite O
first as theh — O limit of a quantum mechanical treatment, limit. It should be noted that, in this limit, one approximation
and second as a result derived wholly within classical mechanics.that produced eqgs 4.2 and 4.5 becomes exactly correct: the
Each derivation provides a distinct insight into the origin of neglect of higher order terms ih in evaluating transition
this temporal divergence. moments8

The quantum mechanical approach is based on the work of . oA limi 3) 3)
Akiyama and Loring?® who reported an approximate, analytical Taking theh — 0 limit of Ry’ in eq 4.2 and OfRﬁ” "
theory of the two-pulse vibrational echo for a Morse oscillator
coupled to a harmonic solvent. For the present application, we
consider this model in the absence of the solvent, in which case
the theory results from the three following approximations. The
transition moments are evaluated to lowest ordeh,ironly

IV. Analytical Treatment of the Response Function

eq 4.5 requires the leading order dependence for shall
of the temperature-dependent factd¥gz), which may be
determined exactly from eq 4.6 by converting the summations
to integrals

single-quantum transitions are considered, and only bound states limN;(z) = (Bhw) 'Ni(7) (4.8)
are included. The third-order response functi®#(ts, 0, t;) is

partitioned into a sum ofephasingand nonrephasingerms. IZﬂD dy)) o V+YI(4pD)Hywr/(26D)

The rephasing terms are characterized by oscillations with the Ni(7) = 0 (4.9)

time dependencen(t; — t3), which vanish when the echo
condition is satisfied,t; = t3. These terms also contain
temperature-dependent dephasing functions deridigdwhich
are decaying functions of the variatile— t; and which hence ~ The expressions fd®® in egs 4.2 and 4.5 depend brthrough
become independent of time under the echo condition. By thef dependence dfj in eq 4.6, through thé dependence of
contrast, the nonrephasing terms contain temporal oscillationsfactors such as'® — 1, and through an explicit prefactor of
with the time dependence(ts + t;) and have temperature- fi™'. Taking thei — 0O limit in egs 4.2 and 4.5 requires
dependent decay factors of the foM{(t; + t3), which retain ~ expanding terms of the form“ — 1 through orderi® and
their time dependence for any positive values of the time delays retaining only the leading dependence df;, shown in eq 4.8.
t; and t3. These results follow from omitting the solvent These limits are

relaxation factors in eqs 30 and 34 of ref 28.

25D —y-+Y2/(46D)
Jo dve

t
Rt 0,t) = R(t;, 0,t) + RY(t;, 0,t)  (4.0) QEE)RS)(% 0.t)=-— ﬁ[ cosw (t; — tl)[N (t—t) —
(3) — 2p\—1 iw(tz—ty) 2t — t.)\ _ 2t

Aty 0,1) = (2nPw’h) *Im[e Xiety, t) + (w( 3 D)N,,(t o4 sty — 3))N, t—t) +

e Uy (1 1] (4.2) A A W

. N, ( ) U
Xeo = INy(t — t) + Ni(ty — ][ — 1] + [Nat — t) + sine (t = L)) Nelts = 1) + ( g )Nl(‘s TWt
* _ * _ iA(t—2tz) _
3Nt — 1) + 2Ng(t; — t)][e 1] (4.3) (wzt;([t)lzﬁ 3))N,2,(t3 Ty ] @10

Vo= 2Nty — 1) + 2Nyt — ) +
) At ; 3) = 2li 3) _
No(t; — tl)][elA(tS_tl) — 1] — 4ANL(t; — t) Slnz(f) + LLIHE)R% (t 0.1) ZLmRﬁe (t 0.~ 1) (4.11)

2Nyt 1) SINAY) (44)  pere i = ¢ + iR

For t; = t3 = t, the rephasing term in eq 4.10 becomes a

3) - 3) —
Rfv (t3 0,t) = 2R(re (t3 0, —t) (4.5) simple linear divergence
The temperature-dependent dephasing functigrese defined R§3) t
by t 0,t)= ——— (4.12)
© 2n?D
nmax nmax
N(7) = T 756”/[20 -~ fen) (4.6) Calculation of the nonrephasing term in eq 4.11 requires
n= n=

evaluation of the integral in eq 4.9. Because our focus is the
1 1 2 nonlinear response of a bound degree of freedom, we restrict
=ho(n+ ;) —h(A2)(N+ 7)) (4.7) our attention tg8D > 1, as in Figures 43. In this case, the
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guantum vibrational echo from an anharmonic oscillator has
been described in the conventional formalism of nonlinear optics
in terms of the two-sided Feynman diagrams that depict terms
in the radiatior-matter perturbation theof2® Diagrams that
contribute to rephasing processes are characterized by a quantum
coherence with time dependence expii) followed by a
coherence with time dependence eup(s), with o' and "
signed frequencies of single-quantum transitions with opposite
signs. The product of these factors yields an oscillation tyith

— tz at an anharmonic frequency that vanishedias 0. For

-80[ the Morse oscillator, this frequency A= hw?/2D. Individual
double-sided Feynman diagrams are not useful in a discussion
of the classicah — 0 limit, because their values diverge in
this limit, and the classical limit is obtained by combining
Figure 4. The classical mechanical third-order response function is contributions from different dlagrams. The Cor_mectlon be_tween
shown forD = 25.6. The solid curve is the approximation of eqs duantum rephasing and the classical time divergence is most
4.12 and 4.16, and the dashed curve, nearly indistinguishable on the€asily appreciated by considering the zero-temperature limit of

scale of the larger plot, is computed numerically from eq 2.4. Short- the rephasing term in eq 4.2, which describes a three-level
time behavior is shown in the inset. systemd at T = 0.

R . ! . ! . L .
1005 30 100 150 200
t

integral in eq 4.9 can be approximated by replacing the thermal . (3 1 . _ _
distribution with its harmonic limit. M%Rfe (t3 0,t) = mzwzh{sm((w A)ts — 1) x
1 [cosAt; — 1] — cos( — A)(t; — ty))[sin Atg]} (4.18)
No(7) ¥ ————— (4.13)
1-— i% At the echo conditiont; = t; = t, this expression becomes
I, 0,1) = — SNAL (4.19)
Ny(o) ~ (4.14) Re mewh
(1 SyECis )2
2Dg Rephasing has removed any time dependence involving the
harmonic frequencyn, and the echo signal is predicfetb
N,(7) ~ 2 (4.15) oscillate at the anharmonic frequen&y Although this expres-

sion describes a quantum systenTat O, it has a finiteh —
0 limit, giving precisely the classical mechanical divergence of
eq 4.12. A quantum oscillation at an anharmonic frequency is

[t=20g)

Substitution of these results into eq 4.11 yields

transformed into a linear divergence in classical mechdsics.
The classical mechanical results of eqs 4.12 and 4.16 were

R, 0,t) = — L | cos 2t 2-32-7 determined as théi — O limit of a quantum mechanical
rin 2mPD 1+ Z2)3 expression. Further insight into the classical response function
may be obtained by deriving the identical result from a wholly
sin 2wt z(5+ 22) (4.16) classical mechanical treatment, which is based on the classical
1+ 22)3 analogues of the approximations made in ref 28. We define a
model classical oscillator by making a canonical transformation
7= wt (4.17) from the Morse action-angle variables of eqs-22712 to a pair
Dj ’ of “harmonic oscillator” variables
In contrast to the rephasing term in eq 4.12, the nonrephasing B 2l
contribution toR®)(t, 0, t) decays to zero, as?. To assess the a(l.0) = v o coso (4.20a)
validity of these approximations, we compare in Figure 4 the
classicalR@)t, 0, t) for BD = 25.6 from Figure 2, the dashed p(1,60) = — v 2lmw sin 6
curve, to the prediction of eqs 4.1, 4.12, and 4.16, shown by (4.20b)

the solid curve. Except at very short time, as shown in the inset,
the approximate result provides a quantitatively accurate
representation of the classical response function.

where the angle variablé evolves under anharmonic Morse
oscillator time evolution according to eq 2.14(t) = 6(0) +

. . . o(t, with | constant, and the action-dependent frequency
~ The analytical results in egs 4.10 and 4.11 pr)owde SOME gefined in eq 2.12. This model oscillator is assumed to couple
insight into the origin of the linear divergence B, 0,9 to the electromagnetic field through the “coordinatgtather
shown in Figures 24. As shown in eq 4.12, the rephasing term  than g, so that the classical response function takes a form
att; = t3 = t becomes exactly equal to the apparent asymptotic anajogous but not identical to eq 2.3.

divergence ofR(j) in Figure 2,—t/(2n?D). The nonrephasing
term oscillates at@ and decays asymptotically to zerotas.
Thus, although we do not prove thﬁﬁ) diverges linearly in
time, the quantitatively accurate theory of eqs 4.12 and 4.16
displays this feature. The origin of this divergence may be Equations 4.20 and 4.21 define a model anharmonic oscillator
understood within qguantum mechanics from consideration of interacting with radiation, which is not identical to the Morse
the quantum version of the theory in egs 4.2 and 4.5. The oscillator model of section Il. The effective coordinate and

ROty 1y, ty) = — B{{ats + t, + ), Ot + 1)}, At}
00)}0(4.21)
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momentum defined in eqs 4.20 may also be viewed as approx-time Poisson brackets or stability matrix eleme#tfs + ty)/
imations to the Morse oscillator coordinate and momentum, ap(ty); such linearity is generic for integrable systéfrand can
obtained by expanding the exact relationships in egs 2.8 andbe understood in terms of the relative shearing motion of nearby
2.9 to lowest order irH/D. The Fourier representation of the trajectories in phase space. The manipulations that produced
effective coordinate(l,0) = Sk gk(l)€¥’ has only two terms, eq 4.23 give insight into the temperature independence of
k = +£1, just as for a harmonic oscillator. This Fourier decom- Rﬁ?(t, 0, t) for the Morse oscillator. This is a consequence of
position ofq is, by standard correspondence principle argu- the linear dependence af(l) on| in eq 2.12. For the general
ments?! just the classical analogue of the restriction to one- case of a one-dimensional anharmonic oscillatardl is not
quantum transitionsAn = +1) in the Akiyama-Loring treat- constant, and the analogue of the first term in eq 4.23 will
ment28 The nonlinearity of the oscillator is nevertheless mani- depend on action, thereby producing a temperature-dependent
fested through the action dependencedf, the classical ana-  factor upon thermal averaging. As noted in the previous section,
logue of the anharmonic energy spacings preserved in the treatye have determined that the apparent linear divergence in

ment of ref 28. o N _ _ REXt, 0, t) is temperature dependent for a quartic oscillator.
Using the expressions in egs 4.20, it is possible to derive an The two analytic treatments of the nonlinear response of a Morse
explicit form for the nonlinear responsR3\t, 0, t). As the oscillator presented here support the existence of the apparent
Fourier representation of the coording(é d;t) consists of two  |inear divergence manifested in the numerical calculations of
terms Figures 2 and 4.
o | +io HioW)t | —i0 i)t V. Conclusions
ql, e;t) = —me[e e +ee ] (4.22)

We have made three arguments in support of the proposition

evaluation of the nested Poisson brackets in eq 4.21 gives risenat the classical mechanical nonlinear response function for a
to a Fourier series with terms havikg= 0, £2, and+4. Those thermal ensemble of anharmonic oscillators diverges in time.

terms withk = 0 average to zero when integrated over the angle W& have demonstrated this to be the case with numerical
0, so that only thé = 0 terms contribute t&®. Fort; = t, t, calculations over a finite time interval, and we have presented

= 0, andtz = t, thek = 0 terms are found to be two derivations, from quantum and classical mechanics, of an
approximate but quantitatively accurate theory that displays this
feature. This finding brings together two notions that may be

22 4
__t 1+ 2 cos(2(1)t) _|_t I ‘g cos(()t) + found in the literature. The first is the proposal by Leegwater
2ntD D and Mukame® that the divergences that characterize classical
3tw® . . mechanical nonlinear response functions for a microcanonical
D sin(2o(1)t)| (4.23) ensemble are destroyed by the dephasing associated with a

thermal average in a canonical ensemble. The second is the
The time-dependent phase factors in the nested Poisson brackéextbook descriptiof?-23of echo spectroscopy as reversing the
combine to give two types of terms, which, following the effects of inhomogeneous dephasing from a static distribution
analysis of eqs 4.2 and 4.5, we designate as rephasing andf energies. We propose that this rephasing property of the
nonrephasing, respectively. The rephasing term in eq 4.23 isvibrational echo produces a divergence that is the signature of
—t/2m?D and has no oscillatory dependence. The remaining  stabilities of classical trajectories.
terms are the nonrephasing contribution and exhibit oscillatory  What are the implications for molecules in the laboratory of
dependence in addition to power law growthtirA diagram- this result for a model of noninteracting anharmonic oscillators?
matic representation of the classical response function in eq 4.21First, it must be recalled that the laboratory is quantum
which permits the ready identification of rephasing and non- mechanical and that, at long enough time, apparent classical

rephasing contributions, is presented in the Appendix. divergences turn into quantum oscillations, as in Figure 3.
To computeRAt, 0, 1), thek = 0 terms in eq 4.23 must be  Second, our model has not included dissipation, which produces
averaged over the action distribution functigs(]). As the dephasing that is not rephased by the echo pulse sequence.

rephasing term is independent of action, its averaged value isHowever, the existence of a temporally diverging response
—t/2n?D for an arbitrary normalized action distribution function. function for the classical mechanical model considered here
In particular, the rephasing term is independent of temperature.suggests that the time-dependent perturbation theory that
To evaluate the nonrephasing contributions to the responseproduced eq 2.1 is not valid at long times for this model, because
function, we employ the same approximations used in eqs4.13 of the nonlinearity of classical mechanics. Such an interpretation
4.15 to obtain thé — O limit of the Akiyama-Loring theory; is not without precedent. In his article entitled “The Case against
the Morse canonical distribution is replaced by the harmonic Linear Response Theory,” van Kampen has stated of nonlinear
oscillator distributionopo(l) = wpe ', and the upper limit in response theory that “this extension of linear response theory
the integration over actiohis set to infinity. The classical non- is even more manifestly wrond? Fortunately, the practical

linear response functioR®)(t, 0,1) is then found to bédentical utility of the results yielded by nonlinear response theory for
with the result obtained as thie— 0 limit of the Akiyama- dissipative systems with many degrees of freedom has been
Loring theory, namely, it is the sum of expressions 4.12 and established empirically. Our finding has implications for finite-
4.16, which is shown by the solid curve in Figure 4. field calculations of the classical mechanical nonlinear re-

Although the nonrephasing terms in eq 4.23 diverge as powersSponsé? 7 in which the complexities of relations containing
of t for fixed values of the actioh (energyH(l)), averaging  Stability matrices like eq 2.4 are avoided by carrying out
over a distribution of frequencie®(l) leads to oscillatory nonequilibrium simulations in the presence of the driving field.
contributions proportional to ratios of polynomialstithat decay For models of the type discussed here, the divergend@‘ﬁbf
to zero ast — «. As noted in section lll, the rephasing suggests that the regime of validity of third-order response
contribution linear int has its origin in the behavior of two-  theory will become limited to weaker and weaker fields as time
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increases. The practical implications of such a scenario remain
to be explored in comparisons between finite-field and nonlinear
response calculations in classical mechanics.
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Appendix A: Diagrammatic Formulation of the Classical
Response Function

In the calculation of the nonlinear response function for the
classical model oscillator of eqs 4.20 and 4.21, the rephasing
and nonrephasing contributions could be separately identified, \%|
as shown in eq 4.23. In the corresponding quantum mechanicalrigure 5. Diagrammatic representation of a classical mechanical
calculation, double-sided Feynman diagr&fgrovide a useful nonlinear response function.
way to identify rephasing and nonrephasing contributions to the
response function. As noted previously, individual quantum line connecting the endpoints. Graphs related by reflection about
mechanical double-sided Feynman diagrams diverde-as0 this horizontal line have values that are complex conjugates,
and hence have no direct classical mechanical analoguesfor example] = II*. Each graph, at, = 0, represents either a
However, the formalism of eqs 4.20 and 4.21 suggests arephasing or nonrephasing contribution to the vibrational echo.
diagrammatic formulation of a classical response function, which  From eq A3, eaclay(t) carries a phase factor expt), while
retains the complex exponential functions characterizing coher- ai(t) carries exptiwt). The total phase factor associated with
ence dynamics in quantum mechanics. each diagram is then easily determined. Diagram | in Figure 5

Because double-sided Feynman diagrams depict perturba-has the phase factor exp(its — t1)) and is by definition a
tions of the density matrix, we first rewrite the classical response rephasing contribution. Diagram Il has a value that is the
function in eq 4.21 in an equivalent form in which Poisson complex conjugate of that of | and has phase factor eip(ts
brackets act directly on the classical phase space distribu-— t,)). Diagrams II-VI represent nonrephasing contributions,
tion, p. with phase factors exgfiw(t; + t1)). The value of diagram | is

Rty tp, ty) = — [ dT [a(t, +t, + t{a(t, + 1), {a(ty),

2 <

3

—t3 ) .
_ I(ty, 0,t,) = |——] €& WIN(t, — t,) —
@1 (ay G0N (4sz) e Nells — 1)
For a single degree of freedom, the phase space volume element ot —t)_, a)zt3(t3 —t)_.
dI’ = dp dqg can be written through a canonical transformation : 28D Ni(ts = t) — N(t; — t))| (AS)

86°D?

The dephasing functionis; are defined in eq 4.9. The values
a1, 0: ) =q +q (A2) of the other five diagrams can be related to that of | according
Y e to

in terms of the action-angle variables of eqs22812 as @ =
dl do. The effective coordinate in eq 4.22 may be written as

| 0 _jot —iw?t2D

a=4+/———€"d"e . q=q (A3) l1(t5, 0,1,) = I*(t5, O, 1,)

2mw
— |* —
Substitution of this Fourier series fgiinto the four occurrences Mt 0,1) = 1"(t5, 0, ~t,)

of that quantity in eq Al yields 16 terms. Each occurrence of IV(ts, 0,t,) = I(t5, 0, —t;) (AB)
qr carries a factor expf), and eacty, contributes expfio).

Terms in the integrand in eq Al that carry a factor exg)i V(ts, 0,1,) = 1*(t5, 0, —1,)

with k = 0 will average to zero, because the distribution is

independent of. Therefore, out of the 16 terms, only the 6 VI(ts, 0,4) = I(ts, 0, —ty)

terms involving two factors each af and g, will survive the
angle average. These terms can be represented with the siSumming the graphs yields
diagrams shown in Figure 5. Each diagram is read from left to

right, with successive line segments representing the effects of R(ts, 0,1,) = 2Rel(t,, 0,1,)
9(0), (ty), otz + t2), anda(ty + t2 + tz). Thus, the three leftmost ey ¥
segments represent Poisson brackets, and the rightmost segment Ry (3 0,1) = 2R (t5, 0, —ty) (A7)

indicates multiplication. Segments pointing up, as scanned from

left to right, indicat_eqf, and segments pointing down represent g pstitution of the value of in eq A5 into egs A7 gives the

q.. For example, diagram I in Figure 5 represents the term  oypressions in egs 4.10 and 4.11. Although the specific results
in eqs A5-A7 were derived for the particular case of the Morse

| = —f dr” [o(t, + t, + t){ gt + ), {aty), {a(0), p}}}] oscillator, this diagrammatic representation of the third-order

(A4) response function is applicable to general potentials, within the

approximation of the coordinate by the quantifyn eq 4.20.

Each graph must begin and end on a (hypothetical) horizontal The diagrammatic formulation in Figure 5 permits the applica-
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tion of the quantum mechanical concepts “rephasing” and

“nonrephasing” in classical mechanics.
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