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While the study of optical phenomena that depend linearly upon the irradiance or associated electric field of 

light has generated a wealth of understanding of the physical world and powerful technologies to improve our lives, 

the study of nonlinear optical phenomena have provided new avenues towards understanding and instrumentation.  

This paper attempts to describe the physics of optical second harmonic generation (SHG) as it applies to the 

technique of second harmonic imaging microscopy (SHIM). 

The interaction of light with matter is productively modeled as an interaction of an oscillating electric field (E-

field) with a dielectric material.  As a light wave passes through a dielectric, the E-field component will separate the 

positive and negative charges in the material.  This charge separation establishes internal E-fields that oppose the 

driving field and generate forces that restore the separated charges back toward equilibrium.  The E-fields that result 

from polarization of the dielectric are the source of scattering by a dielectric material.  At optical frequencies, the 

oscillation of atomic electron clouds relative to their nuclei are the dominant source of dielectric polarization: more 

massive particles have moments of inertia that are too large to permit much physical displacement in the short 

period of the light’s oscillation. 

The electric polarization of a dielectric material can be well described by modeling the dielectrics as electrons 

connected to stationary nuclei by springs with spring constants that depend on the displacement of the electron.  The 

induced dipole moment per unit volume is the electric polarization and is denoted by the vector P.  A time-varying 

expression for P can be derived by modeling the forces exerted by the E-field and assuming a restorative force that 

is linear to the displacement (this is analogous to the simple harmonic motion of masses attached by an ideal spring); 

namely, for each electron: 

 
me* d2x/dt2 = qe*E0 cos (ωt) - kE*x(t), which can be integrated to 

x(t) = qe / me(ω0
2-ω2) * E(t). 

 
Since the induced dipole moment of a unit volume with dipole density N is simply N*qe*x, substitution for x yields 

a useful expression for the electric polarization: 

 
P(t) = qe*N*x(t) = qe

2*N / me(ω0
2-ω2) * E(t) 



 
One consequence of this expression for P is that any E-field resulting from the electric polarization will oscillate 

with the same frequency as the driving E-field (i.e. P(t) α E(t)).  Therefore, this model predicts that the light 

scattered by a dielectric is of the same frequency as the incident light. 

 Expansion of the expression of the restorative force to include higher-order terms predicts a number of 

nonlinear interactions of materials with the strong E-fields of intense light.  Just as real springs have spring constants 

that are not strictly linear with respect to displacement from equilibrium, the restorative forces that oppose the 

separation of charges are better described by a sum of linear and higher-order terms of the perturbing E-field.  Using 

the same logical progression by which the relationship between P(t) and E(t) was described above (assuming only 

linear components of the restorative force), one can derive the relationship with respect to both linear and nonlinear 

terms of the restorative force.  Schematically, the relationship between the magnitudes of P(t) and the various terms 

of E(t) is 

 
P(t) = ε0 * (χ(1)E + χ(2)E(t)E(t) + χ(3)E(t)E(t)E(t) + . . . ) 

 
where ε0 is the permittivity of free space and χ(n) is the coefficient—called the dielectric susceptibility—that modifies 

the term that is the n-th order of E(t).  Assuming that E-field varies such that E(t)=E0sin(ωt) and substituting into the 

above equation, the electric polarization can be rewritten as 

 
P(t) = ε0 * (χ(1)E0sin(ωt) + χ(2)E0

2(1 – cos2(ωt)) + χ(3)E0
3(sin(ωt))(1 – cos2(ωt)) + . . . ) 

 
and rearranged to 

 
P(t) = ε0 * (χ(1)E0sin(ωt) + χ(2)E0

2(1 - cos(2ωt))/2 + χ(3)E0
3(3sin(ωt) – sin(3ωt))/4 + . . . ). 

 
Notice that the 2nd-order component expands to include a term that varies at twice the frequency of the primary 

perturbing wave.  This term predicts that a dielectric material could scatter light that is the 2nd harmonic of the 

incident light.  The intensity of this scattered light should depend quadratically upon the intensity of the primary 

light.  This effect, and the other effects described by nonlinear terms of E(t), are generally insignificant at the 

intensities of light usually encountered; however, laser techniques can generate sufficiently intense fields to make 

these effects observable.  In fact, the first demonstration of 2nd harmonic generation (SHG) was reported in 1961,1 

only one year after the first report of an optical laser.2  In addition to SHG, the above equation predicts a number of 



other phenomena, including induction of a time-invariant E-field that depends upon (E0)2 and generation of a third 

harmonic with an intensity that depends upon (E0)3.  Describing the extensive menagerie of nonlinear effects, 

however, is well beyond the scope of this paper: further description will be limited to what is immediately necessary 

to describe SHG. 

 An important consequence of the equation above is that the 2nd-order effects must vanish in a material that 

is isotropic or that has an inversion center.  For simplicity, only the magnitude of the vectors P and E are dealt with 

in the treatment above.  Considering the direction associated with these vectors demonstrates that the 2nd-order term 

must be zero for any material that is inversionally invariant, meaning that there is at least one point about which the 

material is symmetric.  This can be seen when considering the effects of negating the magnitude of the incident E-

field.  If an even-ordered term were finite, then the equation above would describe some contribution from the E2 

term to the electric polarization P in whatever direction the equation describes.  The equation would predict the 

same contribution from E-field component with negative magnitude.  Because there is no special direction defined 

by the medium (i.e. it has an inversion center), the only way this term would not create an arbitrarily preferred 

direction would be if its value were zero.  Therefore, 2nd order effects, such as SHG, cannot occur in an isotropic or 

other inversionally invariant material. 

 The treatment of the susceptibility coefficients thus far ignores that they are actually tensors and has treated 

them as scalars.  While this simplification is adequate for many analyses, it fails to adequately describe interesting 

phenomena. The electric polarization susceptibility is more fully characterized as a tensor whose components relate 

the magnitude of electric polarization of a given direction in response to a driving disturbance polarized in a given 

direction.  For example, the first-order susceptibility tensor χ(1) for a given material describes the linear part of the 

medium’s electric polarization in response to the primary E-field of the incident light.  χ(1) can be regarded as a 

tensor that has nine components χ(1)
ij, where i and j denote spatial directions such that each component is a 

coefficient describing the magnitude of the electric polarization, P, in the -direction that results from the -

component of the primary wave’s E-field.  Because i and j can independently take the unit vectors , ŷ, and z , χ

î ĵ

x̂ ˆ (1) 

has nine components.  For example, the χ(1)
xx tensor component describes the -component of P that results from 

the -component of the E-field of the incident light.  In this most general form, the electric susceptibility tensor χ

x̂

x̂ (1) 

contains six components for which i ≠ j (e.g. χ(1)
xz and χ(1)

xy).  For isotropic materials, these six components vanish 

and the remaining three components are equal: this is why χ(1) can be effectively simplified to a scalar for isotropic 



media.  For birefringent materials, however, at least some of these components are nonzero,3 and it is these nonzero 

components that give rise to the phenomenon of optical activity.4

The 2nd-order susceptibility tensor χ(2) describes the magnitudes of SHG polarizations in response to the E-

fields of two incident light waves.  Thus, χ(2) has twenty-seven components (χ(2)
ijk, where i, j and k can independently 

take , ŷ, and ) that describe the magnitude of the electric polarization that oscillates at twice the incident wave’s 

frequency, P

x̂ ẑ

(2), in the -direction and that results from the -component of the of incident E-field and the -

component of another incident E-field.  These two incident fields may be, but need not be, the E-fields of the same 

primary wave.  Depending upon the polarization of the incident light wave(s) and symmetry of the material that 

permits SHG, the scattered 2

î ĵ k̂

nd harmonic light emanating from the material will be restricted to particular 

polarizations or will not be permitted at all (i.e. some or all of the tensor components may be zero).  Because the 

equation describing SHG—namely, P(2)
i= χ(2)

ijkE(1)
jE(1)

k—does not distinguish the order in which E(1)
j and E(1)

k 

calculated, nine of the twenty-seven tensor components are redundant (i.e. χ(2)
xxy = χ(2)

xyx, χ(2)
xxz = χ(2)

xzx, etc.) and 

only eighteen terms are needed to fully describe this tensor for any given medium.5  To my intuition, the spatial 

symmetries of a material define the relationships among its tensor components. 

An important consideration of SHG that is important for SHIM, though not a directly related to the 

susceptibility coefficient concerns the interference among the generated 2nd harmonics.  As a coherent primary wave 

propagates through a harmonophore (a medium that permits SHG) with real thickness, it will generate 2nd harmonics 

along the entire distance.  A complication arises from the fact that all real dieletrics are dispersive: the generated 2nd 

harmonic wave will experience index of refraction n2ω, the fundamental will experience nω, and nω≠ n2ω.  Generated 

2nd  harmonic waves will be in phase with the fundamental but generally not with the previously or subsequently 

generated 2nd harmonic waves.  If the harmonophore is sufficiently thin, the generated 2nd harmonics will be close 

enough in phase to mostly interfere constructively, but destructive interference will occur as the thickness is 

increased.  The thickness at which the interference of the 2nd harmonics first reaches a maximum is called the 

coherence length (Zc) and is related to the fundamental wavelength (λω) and the two indices of refraction as follows:6

 
Zc  = λω / (4*|nω - n2ω|). 

 
The intensity of the generated 2nd harmonic reaches a local maximum when it passes through whole number 

multiples of Zc.  A practice called index matching permits coherent SHG through the length of harmonophore of any 



thickness.  This technique involves using a birefringement harmonophore such that the 2nd harmonic waves are 

scattered with polarizations that are orthogonal to both the propagation and polarization of the fundamental wave. If 

the material also has indices of refraction for perpendicular orientations such that they exactly compensate for the 

dispersion, then SHG can occur in phase through the thickness of the material.  While phase matching is unlikely to 

be found in any given sample in a random orientation, it is useful for designing a system for optimal SHG. The 

concept of a coherence length, however, is generally applicable to any material and any sample to be imaged. 

Second harmonic generation imaging microscopy (SHIM) takes advantage of several useful properties of 

2nd harmonic generation to construct an image of the sample.  The relatively long excitation wavelength used for 

SHIM results in less scattering of the illuminated light than most other microscopy techniques.  Although liquids 

and solids are composed of scatterers at high density, the samples that are generally of interest for microscopists are 

not sufficiently homogenous to restrict constructive interference to the forward propagation of the beam.  The 

inhomogeneities of the samples give rise to Reyleigh scattering, which redistributes energy from the intended target 

to the surrounding medium.  Because this scattering depends upon 1/λ4, the longer wavelengths used for 

illumination in SHIM lead to greatly reduced scattering.  This, in turn, permits a deeper penetration of illumination 

into the sample. 

A 2nd useful property of SHIM is the small volume in which SHG is appreciable.  Because the intensity of 

the generated 2nd harmonic depends upon the square of the intensity of the incident illumination, the intensity of the 

generated 2nd harmonic depends upon 1/r4, where r is the distance from the focal point of the illumination.  This 

contrasts sharply with linear microscopy techniques, such as one-photon fluorescence microscopy, in which the 

generated signal depends upon 1/r2.  Constraining significant SHG to a smaller volume about the focal point 

decreases the size of the resulting voxel.  Thus, the nonlinear relation between illumination intensity and resulting 

SHG intensity increases the spatial resolution of the collected image. 

The fact that SHG is only appreciable in relatively rare materials provides another useful property of 

SHIM: the rarity of harmonophores in a sample provides an endogenous source of contrast.  This rarity is due to the 

requirements that a harmonophore must be noncentrosymmetric and must either be index matched or have a 

thickness that is near a multiple of its coherence length.  The presence of a structure that permits SHG in a medium 

that generally does not allows that structure to result in a feature of the image that can easily be identified.  The lack 

of endogenous sources of contrast appreciable by other microscopy techniques has required applying stains, dyes or 



fluorophores to the sample to more easily identify features of the resulting image.  While useful for identifying 

interesting structures, each of these approaches alters the sample in order to image it.  In fact, many of the common 

approaches to increasing the contrast of biological samples require a fixation step that stops any biological 

processes.  The contrast provided by the endogenous harmonophores allows their identification without first altering 

the sample.   By imaging without applying exogenous components, the image is more likely to represent the 

structure of the unperturbed sample.  This is particularly useful for imaging biological materials because it is 

possible to image a sample while it is still alive and responding to experimental conditions. 

SHIM requires instrumentation similar to that used for multiphoton excitation fluorescence microscopy, 

including similar lasers, scanning mirrors, lenses, filters, detectors, computers and software.  Generally, the laser is 

raster-scanned across the sample my means of two mirrors mounted on galvonometers in order to scan the focal 

point along the x- and y-axes.  The laser then passes through the objective to focus the light on the sample, which 

may scatter a 2nd harmonic.  The scattered signal is collected by the objective lenses (to collect back-scattered light), 

a condenser lens (to collect forward-scattered light) or both.  Placing a filter, such as a substrate coated with 

appropriately designed layers of thin films, permits transmission of the 2nd harmonic signal while reflecting the 

undesired fundamental.  The filtered signal can be detected by a high-speed sensor, such as a photomultiplier tube, 

and the resulting electronic signal interpreted and saved by a computer.  By synchronizing collecting signals from 

the detector and the position of the galvonometers, the computer reassembles the saved pixels into a picture. 

SHG creates some constraints on the instrument that are not significant for linear microscopy techniques.  

For instance, while SHG’s dependence upon the square of the illumination intensity requires high-powered 

illumination, many samples will become ionized or otherwise damaged by the sustained application of intense 

illumination.  By using a laser that emits light in short pulses, it is possible to obtain the high instantaneous power 

that is needed for SHG without delivering a time-averaged power high enough to destroy the sample.  Commercially 

available lasers that generate pulses shorter than 100ps permit both the high instantaneous power and low time-

averaged power.  Also, because the scattered signal oscillates at twice the frequency of the illumination, collecting 

backscattered signal requires that the objective must be transparent to both the fundamental and 2nd harmonics. 

Controlling the laser and signal polarizations permits characterization of the symmetries of the 

harmonophores.  By illuminating the sample with light that is polarized in a single direction and measuring the 

emitted SHG signal that is polarized in each direction, it is possible to empirically determine the values of the 



relevant tensor elements of the susceptibility tensor.  For example the element χ(2)
xyy can be determined by 

illuminating the sample with light polarized in the ŷ-direction and detecting the SHG signal that is polarized in 

the -direction.  By extending this experimental approach, and fully using the instrument, it is possible to determine 

the overall symmetries of the unit cell of the crystalline harmonophore.

x̂
7  This information can be combined with 

independent models of how the harmonophore could be arranged in the sample. 

SHIM is a particularly useful, emerging technique for imaging biological materials.8  This technique has 

been successfully used to image and investigate the crystalline, supramolecular structures formed by collagen,9 

myosin10 and microtubules11 without the use of exogenous dyes in living specimens. 
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