Del Mar Photonics

IEEE Nano 2011

This is the First Announcement and Call for Papers for IEEE NANO 2011,
the 11th International Conference on Nanotechnology to be held in Portland, Oregon, USA from August 15-18, 2011. This conference is the sequel to meetings held in Maui (2001), Washington (2002), San Francisco (2003), Munich (2004), Nagoya (2005), Cincinnati (2006), Hong-Kong (2007), Arlington (2008), Genoa (2009), and Seoul (2010).

Please pass on this email to colleagues who may be interested in participating. Make sure to bookmark the link to the conference website (ieeenano2011.org) to get the most up-to-date information about the conference as we move on to the deadline for abstracts submission (two-page abstract due Tuesday, March 15, 2011) and the conference itself.

The conference will feature plenary, invited, and contributed papers (oral and poster sessions) thematically arranged according to the topics listed below, along with short courses and a technical exhibition. In addition, a special event on Nanotechnology Commercialization is planned for Friday, August 19 by the Oregon Nanoscience and Microtechnology Institute (ONAMI).

Half-day Tutorials will be offered to complement the regular sessions and introduce the latest state-of-the-art technology to attendees. To submit a Tutorial proposal, please click here.

Program Tracks Include:

* Nanorobotics/nanomanufacturing
* Nano/bio-medicine
* Nanofabrication
* Nanophotonics
* Nanoelectronics: Graphene/CNTs/nanowires
* Nanoelectronics: Devices (SET/RTD/QD/molecular/etc)
* Nanoelectronics: Nanocircuits/architectures
* Nanoelectronics: Nanosystem reliability
* Quantum computing
* Nanosensors/actuators
* Nanomaterials

* Nanometrology/characterization
* Simulation/modeling
* Nanopackaging
* Nanofluidics
* Nanomagnetics
* Spintronics
* Energy (photovoltaics/storage)
* Industrial applications & commercialization
* Environment/health/safety (EHS) & standards
* Ethical/legal/social implications, and IP
* Education

Please see the IEEE NANO 2011 website to download the following documents:
Call for Papers
Information for Exhibitors/Sponsors
Call for Tutorials Information
On behalf of the organizing committee, I thank you for your interest.
We hope to see you in Portland next summer.

Jim Morris (General Chair)
Portland State University

Sign up to visit Del Mar Photonics customers at Portland State University

 

From: delmarphotonics  | Aug 11, 2009  | 1,726 views
 
 
Development of a Versatile Near Field Optical Imaging System
Derek Nowak, Portland State University Portland, Oregon
Co-Authors: Justin Hiester, Deepak Vedhachalam, Zechariah K. Dzegede, Erik J. Sánchez

The ability to detect optical information from optically active systems with resolutions below the diffraction limit of traditional light microscopes is of great interest of biologist and material scientists. Using the technique of Tip Enhanced Near-field Optical Microscopy, or (TENOM) (Sánchez, PRL. 1999), fluorescence imaging with ~20 nm resolution has shown to be possible. TENOM demonstrates these optical resolutions with simultaneous topographical information as well as the ability to detect with both electronic state and vibrational bond (Raman) information for single-molecule level identification. TENOM utilizes an Atomic Force Microscopy (AFM) scanning method where the imaging probe has been modified to create a localized field enhancement. The microscopes ability to image in solution is an additional feature. Unfortunately, TENOM has not seen common day use as a research tool, due primary to the level of understanding needed by the user to create suitable probes and correctly operate the microscope. Our goal has been to develop a TENOM based microscope controlled by a single low cost computer, simple control circuits using FPGA data acquisition, and simplified optical system allowing for imaging with photons from almost any visible chromophore without changing filters or excitation wavelength. Our system will be an open source system design, using only off the shelf available components. This instrument will improve upon the nominal 75 nm resolution limit of todays Near Field Scanning Microscopes.

Erik Sanchez
Interests: Development and implementation of nano-scale imaging techniques. Study of the optical interaction of light and nanometric objects in order to generate enhanced fields for fluorescence and Raman spectroscopy/microscopy. Determination of new applications for Focused Ion / Electron Beam systems towards the study of biological systems using near-field and far-field microscopies.

Derek Nowak
Physics Research Odyssey Near-Field Microscopy Multi-Photon Imaging ANSOM Project FDTD Modeling MPI Clustering LMIS Development Classes 
Near-Field Microscopy
Motivation: To obtain florescence images of biological and material systems at spatial resolutions significantly lower than the diffraction limit. This technique has demonstrated optical imaging resolutions of ~40 nanometers, at room temperature and atmospheric pressure.
Side profiles of a near-field aperture probe and apertureless probe scanning over fluorescing chromophores. A fiber optic cable is tapered to a small point via chemical etching and coated with metal to confine light sent down the fiber (aperture)(Pohl, Lewis, Betzig). The light is typically collected below by the high numerical lens and directed to a photon detector in the far field.

 

 

Trestles CW Opus laser illuminates carbon nanotube field effect transistors and measure it's electrical characteristics. This is all done in an ultra high vacuum (UHV) chamber. Trestles CW Opus laser has a fiber-coupled output: single-mode fiber 700-1300 nm, 4 um, 1 m FC-FC and provides output power at fiber output: 300 mW at 700-1000 nm

 


Product news and updates - Training Workshops - Featured Customer - Other News

Del Mar Photonics is your one stop source for ultrafast (femtosecond) as well as continuum wave (CW) narrow linewidth Ti:Sapphire lasers Trestles LH Ti:Sapphire laser
Trestles LH is a new series of high quality femtosecond Ti:Sapphire lasers for applications in scientific research, biological imaging, life sciences and precision material processing. Trestles LH includes integrated sealed, turn-key, cost-effective, diode-pumped solid-state (DPSS). Trestles LH lasers offer the most attractive pricing on the market combined with excellent performance and reliability. DPSS LH is a state-of-the-art laser designed for today’s applications. It combines superb performance and tremendous value for today’s market and has numerous advantages over all other DPSS lasers suitable for Ti:Sapphire pumping. Trestles LH can be customized to fit customer requirements and budget.

Reserve a spot in our Femtosecond lasers training workshop in San Diego, California. Come to learn how to build a femtosecond laser from a kit
 

DPSS DMPLH lasers
DPSS DMP LH series lasers will pump your Ti:Sapphire laser. There are LH series lasers installed all over the world pumping all makes & models of oscillator. Anywhere from CEP-stabilized femtosecond Ti:Sapphire oscillators to ultra-narrow-linewidth CW Ti:Sapphire oscillators. With up to 10 Watts CW average power at 532nm in a TEMoo spatial mode, LH series lasers has quickly proven itself as the perfect DPSS pump laser for all types of Ti:Sapphire or dye laser.
Ideal for pumping of:

Trestles LH Ti:Sapphire laser
T&D-scan laser spectrometer based on narrow line CW Ti:Sapphire laser
 

New laser spectrometer OB' for research studies demanding fine resolution and high spectral density of radiation within UV-VIS-NIR spectral domains New laser spectrometer T&D-scan for research  that demands high resolution and high spectral density in UV-VIS-NIR spectral domains - now available with new pump option!
The T&D-scan includes a CW ultra-wide-tunable narrow-line laser, high-precision wavelength meter, an electronic control unit driven through USB interface as well as a software package. Novel advanced design of the fundamental laser component implements efficient intra-cavity frequency doubling as well as provides a state-of-the-art combined ultra-wide-tunable Ti:Sapphire & Dye laser capable of covering together a super-broad spectral range between 275 and 1100 nm. Wavelength selection components as well as the position of the non-linear crystal are precisely tuned by a closed-loop control system, which incorporates highly accurate wavelength meter.

Reserve a spot in our CW lasers training workshop in San Diego, California. Come to learn how to build a CW Ti:Sapphire laser from a kit
 

AOTF Infrared Spectrometer
Del Mar Photonics offer a handheld infrared spectrometer based on the acousto-optic tunable filter (AOTF). This instrument is about the size and weight of a video camera, and can be battery operated. This unique, patented device is all solid-state with no moving parts. It has been sold for a wide variety of applications such as liquid fuel analysis, pharmaceutical analysis, gas monitoring and plastic analysis. Miniature AOTF infrared spectrometer uses a crystal of tellurium dioxide to scan the wavelength. Light from a light source enters the crystal, and is diffracted into specific wavelengths. These wavelengths are determined by the frequency of the electrical input to the crystal. Since there are no moving parts, the wavelength scanning can be extremely fast. In addition, specific wavelengths can be chosen by software according to the required algorithm, and therefore can be modified without changing the hardware. After the infrared radiation reflects off of the sample, it is converted into an electrical signal by the detector and analyzed by the computer. Del Mar Photonics is looking for international distributors for RAVEN - AOTF IR spectrometer for plastic identification and for variety of scientific and industrial collaborations to explore futher commercial potential of AOTF technology.
 

Open Microchannel Plate Detector MCP-MA25/2

Open Microchannel Plate Detector MCP-MA25/2 - now in stock!
Microchannel Plate Detectors MCP-MA series are an open MCP detectors with one or more microchannel plates and a single metal anode. They are intended for time-resolved detection and make use of high-speed response properties of the MCPs. MCP-MA detectors are designed for photons and particles detection in vacuum chambers or in the space. MCP-MA detectors are used in a variety of applications including UV, VUV and EUV spectroscopy, atomic and molecular physics, TOF mass–spectrometry of clusters and biomolecules, surface studies and space research.
MCP-MA detectors supplied as a totally assembled unit that can be easily mounted on any support substrate or directly on a vacuum flange. They also can be supplied premounted on a standard ConFlat flanges. buy online - ask for research discount!

 

Hummingbird EMCCD camera Hummingbird EMCCD camera
The digital Hummingbird EMCCD camera combines high sensitivity, speed and high resolution.
It uses Texas Instruments' 1MegaPixel Frame Transfer Impactron device which provides QE up to 65%.
Hummingbird comes with a standard CameraLink output.
It is the smallest and most rugged 1MP EMCCD camera in the world.
It is ideally suited for any low imaging application such as hyperspectral imaging, X-ray imaging, Astronomy and low light surveillance.
It is small, lightweight, low power and is therefore the ideal camera for OEM and integrators.
buy online
Femtosecond Transient Absorption Measurements system Hatteras Hatteras-D femtosecond  transient absorption data acquisition system
Future nanostructures and biological nanosystems will take advantage not only of the small dimensions of the objects but of the specific way of interaction between nano-objects. The interactions of building blocks within these nanosystems will be studied and optimized on the femtosecond time scale - says Sergey Egorov, President and CEO of Del Mar Photonics, Inc. Thus we put a lot of our efforts and resources into the development of new Ultrafast Dynamics Tools such as our Femtosecond Transient Absorption Measurements system Hatteras. Whether you want to create a new photovoltaic system that will efficiently convert photon energy in charge separation, or build a molecular complex that will dump photon energy into local heat to kill cancer cells, or create a new fluorescent probe for FRET microscopy, understanding of internal dynamics on femtosecond time scale is utterly important and requires advanced measurement techniques.

Reserve a spot in our Ultrafast Dynamics Tools training workshop in San Diego, California.
 

Beacon Femtosecond Optically Gated Fluorescence Kinetic Measurement System - request a quote  - pdf
Beacon together with Trestles Ti:sapphire oscillator, second and third harmonic generators. Femtosecond optical gating (FOG) method gives best temporal resolution in light-induced fluorescence lifetime measurements. The resolution is determined by a temporal width of femtosecond optical gate pulse and doesn't depend on the detector response function. Sum frequency generation (also called upconversion) in nonlinear optical crystal is used as a gating method in the Beacon femtosecond fluorescence kinetic measurement system. We offer Beacon-DX for operation together with Ti: sapphire femtosecond oscillators and Beacon-DA for operation together with femtosecond amplified pulses.

Reserve a spot in our Ultrafast Dynamics Tools training workshop in San Diego, California.
 

Terahertz systems, set ups and components
New band pass and long pass THz optical filters based on porous silicon and metal mesh technologies.
Band pass filters with center wavelengths from 30 THz into GHz range and transmissions up to 80% or better. Standard designs
with clear aperture diameters from 12.5 to 37.5 mm.
Long pass filters with standard rejection edge wavelengths from 60 THz into GHz range. Maximum transmission up to 80% or
better, standard designs at 19.0 and 25.4 mm diameters.
Excellent thermal (from cryogenic to 600 K) and mechanical properties
Need complet THz set up? Check different options available from Del Mar Photonics or e-mail us for custom set up!

Ready to buy complet THz Spectrometer? Trestles Pacifica THz Time Domain Spectrometer is a modular tabletop 
system for scientific and industrial applications of pulsed THz radiation.

iPCA - interdigital Photoconductive Antenna for terahertz waves
Large area broadband antenna with lens array and high emitter conversion efficiency
iPCA with LT-GaAs absorber, microlens array for laser excitation wavelengths
l £  850 nm, adjusted hyperhemispherical silicon lens with a high power conversion efficiency of 0.2 mW THz power / W optical power. The iPCA can be used also as large area THz detector. The two types iPCAp and iPCAs have the same active interdigital antenna area but different contact pad directions with respect to the electrical THz field.
Interdigital Photoconductive Antenna for terahertz waves generation using femtosecond Ti:Sapphire laser

THz books
IntraStage lowers the cost of test data management!

Struggling with gigabytes or terabytes of test data?
IntraStage easily transforms test data from disparate sources into web-based quality metrics and engineering intelligence you can use.

Contact us today to discuss your test management requirements and specifications of your application.
 


Training Workshops

Come to San Diego next summer! Attend one of our training workshops in San Diego, California during summer 2011
Del Mar Photonics has presented training workshops for customers and potential customers in the past 3 years.
Our workshops cover scientific basics, technical details and provide generous time for hands-on training.
Each workshop is a three-day seminar conducted by professional lecturer from 10am to 4pm. It includes lunch, as well as a training materials. We have also reserved two days for Q&A sessions, one-on-one system integration discussions, social networking, and San Diego sightseeing.

The following training workshops will be offered during this summer:
1. Femtosecond lasers and their applications
2. CW narrow line-width widely tunable lasers and their applications
3. Adaptive optics and wavefront sensors

4. Ultrafast (femtosecond) dynamics tools

Featured Customer

Trestles LH10-fs/CW laser system at UC Santa Cruz Center of Nanoscale Optofluidics

Del Mar Photonics offers new Trestles fs/CW laser system which can be easily switched from femtosecond mode to CW and back. Having both modes of operation in one system dramatically increase a number of applications that the laser can be used for, and makes it an ideal tool for scientific lab involved in multiple research projects.
Kaelyn Leake is a PhD student in Electrical Engineering. She graduated from Sweet Briar College with a B.S. in Engineering Sciences and Physics. Her research interests include development of nanoscale optofluidic devices and their applications. Kaelyn is the recipient of a first-year QB3 Fellowship. In this video Kaelyn talks about her experimental research in nanoscale optofluidics to be done with Trestles LH laser.

Reserve a spot in our femtosecond Ti:Sapphire training workshop in San Diego, California during summer 2011


Frequency-stabilized CW single-frequency ring Dye laser DYE-SF-007 pumped by DPSS DMPLH laser installed in the brand new group of Dr. Dajun Wang at the The Chinese University of Hong Kong.
DYE-SF-077 features exceptionally narrow generation line width, which amounts to less than 100 kHz. DYE-SF-077 sets new standard for generation line width of commercial lasers. Prior to this model, the narrowest line-width of commercial dye lasers was as broad as 500 kHz - 1 MHz. It is necessary to note that the 100-kHz line-width is achieved in DYE-SF-077 without the use of an acousto-optical modulator, which, as a rule, complicates the design and introduces additional losses. A specially designed ultra-fast PZT is used for efficient suppression of radiation frequency fluctuations in a broad frequency range. DYE-SF-077 will be used in resaerch of Ultracold polar molecules, Bose-Einstein condensate and quantum degenerate Fermi gas and High resolution spectroscopy

Other News

Nd:YAG laser ordered by the University of Leon, UANL, Mexico
Wedge 50 Multipass Amplifier pumped with a Darwin-527-30-M DPSS Laser ordered by Hong Kong customer
New Trestles LH10-fs/CW femtosecond+CW laser ready for delivery to the University of California Santa Cruz
Trestles femtosecond Ti:Sapphire laser delivered to North Carolina State University
Del Mar Photonics sponsor IONS (International OSA Network of Students) conference IONS-NA-2 in Tucson, Arizona IONS-NA-2 website
Best talk and best poster awards at IONS-Moscow 2010 conference sponsored by Del Mar Photonics
Watch Del Mar Photonics videos!
Del Mar Photonics is now on Twitter!

Del Mar Photonics featured components

Del Mar Photonics continuously expands its components portfolio.


 
Solar Prisms for Concentrating Photovoltaic Systems (CPV)
Solar cells made of compound semiconductors such as gallium arsenide are very expensive. Usually very small cells are installed and various means such as mirrors, lenses, prisms, etc..are used  to concentrate sunlight on the cells. Concentration photovoltaic technology (CPV) uses the solar radiation with an efficiency of 40%, double that of conventional solar cells
Del Mar Photonics design custom Concentrating Photovoltaic Systems (CPV) and supply variety of the optical components for CPV such as solar prisms shown in the picture.
 

hexagonal light pipes, optical rods


 
Axicon Lens
Axicon lens also known as conical lens or rotationally symmetric prism is widely used in different scientific research and application. Axicon can be used to convert a parallel laser beam into a ring, to create a non diffractive Bessel beam or to focus a parallel beam into long focus depth.
Del Mar Photonics supplies axicons with cone angles range from 130° to 179.5° for use with virtually any laser radiation. We manufacture and supply axicons made from BK7 glass, fused silica and other materials.

download brochure -
request a quote
Del Mar Photonics offers optical elements made of high quality synthetically grown Rutile Titanium Dioxide crystals. Rutile (TiO2) coupling prisms
Del Mar Photonics offers optical elements made of high quality synthetically grown Rutile Titanium Dioxide crystals. Rutile’s strong birefringency, wide transmission range and good mechanical properties make it suitable for fabrication of polarizing cubes, prisms and optical isolators. Boules having high optical transmission and homogeneity are grown by proprietary method. Typical boules have 10 - 15 mm in dia. and up to 25 mm length. Optical elements sizes - from 2 x 2 x 1 mm to 12.7 x 12.7 x 12.7 mm. Laser grade polish quality is available for finished elements. So far we the largest elements that we manufactured are 12 x15 x 5 mm, in which optical axis is parallel to 15 mm edge, 5 mm is along beam path, 12 x 15 mm faces polished 20/10 S/D, one wave flatness, parallelism < 3 arc.min. (better specs. available on request).

more details - download brochure -
request a quote

Vacuum viewport

Del Mar Photonics offer a range of competitively priced UHV viewports , Conflat, ISO or KF including a variety of coatings to enhance performance. Del Mar Photonics viewports are manufactured using advanced techniques for control of special and critical processes, including 100 percent helium leak testing and x-ray measurements for metallization control. Windows Materials include: Fused silica, Quartz , Sapphire , MgF2, BaF2, CaF2, ZnSe, ZnS, Ge, Si, Pyrex. Standard Viewing diameters from .55" to 1.94 ".
Coating - a range of custom coatings can applied - which include
- Single QWOT
- Broad Band AR
- V coatings
- ITO
- DLC (Diamond like coating)

more details - request a quote

 

 

Hydrogen Thyratrons are used in such devices as radars with different power levels, high-power pulsed technical, electrophysical, medical devices and lasers. Sophisticated design and high quality ceramic-metal envelope determines long lifetime and very accurate and reliable operation of hydrogen thyratrons under wide range of environmental conditions.
Applications:
- radars
- pulsed  lasers power supplies
- medical apparatus
- electrophysical instrumentation

Triggered Three-Electrode Spark Gap Switches are ceramic-metal sealed off gas discharge trigatron-type devices with a co-axial trigger electrode. These Gas Discharge Tubes contain no mercury and, due to an advanced design, feature high reliability and a long lifetime being operating under wide range of environmental conditions.

Applications:
- pulsed installation for processing materials
- installations with plasma focus
- pulse power supplies for lasers and other pulse equipment
- medical apparatus such as lithotriptors and defibrillators
- processing systems for petroleum wells
We are looking forward to hear from you and help you with your optical and crystal components requirements. Need time to think about it? Drop us a line and we'll send you beautiful Del Mar Photonics mug (or two) so you can have a tea party with your colleagues and discuss your potential needs.

 

Sign Up Today to receive Del Mar Photonics newsletter!

* required

*


 

 

Del Mar Photonics, Inc.
4119 Twilight Ridge
San Diego, CA 92130
tel: (858) 876-3133
fax: (858) 630-2376
Skype: delmarphotonics
sales@dmphotonics.com